Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=x^(5)-3 is even, odd or neither.
neither
even
odd

Determine whether the function f(x)=x53 f(x)=x^{5}-3 is even, odd or neither.\newlineneither\newlineeven\newlineodd

Full solution

Q. Determine whether the function f(x)=x53 f(x)=x^{5}-3 is even, odd or neither.\newlineneither\newlineeven\newlineodd
  1. Define function f(x)f(x): Define the function f(x)f(x) and consider the function for f(x)f(-x). Substitute x-x for xx in f(x)=x53f(x)=x^5-3. f(x)=(x)53f(-x)=(-x)^5-3
  2. Substitute x-x: Simplify the right side of the function.\newlinef(x)=(x)53f(-x)=(-x)^5-3\newlineSince the exponent is odd, (x)5(-x)^5 becomes x5-x^5.\newlinef(x)=x53f(-x)=-x^5-3
  3. Simplify function: Compare f(x)f(x) with f(x)f(-x). We have: f(x)=x53f(x)=x^5-3 f(x)=x53f(-x)=-x^5-3 Since f(x)f(-x) is not equal to f(x)f(x) and f(x)f(-x) is not equal to f(x)-f(x), f(x)f(x) is neither even nor odd.

More problems from Even and odd functions