Q. Determine whether the function f(x)=x4+5x6−6 is even, odd or neither.evenneitherodd
Consider function f(x): Consider the function f(x)=x4+5x6−6. To determine if the function is even, odd, or neither, we need to evaluate f(−x) and compare it to f(x). Substitute −x for x in f(x) to get f(−x). f(−x)=(−x)4+5(−x)6−6
Simplify f(−x): Simplify the right side of the function f(−x). f(−x)=(−x)4+5(−x)6−6 Since both x4 and x6 are even powers, (−x)4=x4 and (−x)6=x6. Therefore, f(−x) simplifies to: f(−x)=x4+5x6−6
Compare f(−x) with f(x): Compare f(−x) with f(x). We have f(x)=x4+5x6−6 and f(−x)=x4+5x6−6. Since f(−x)=f(x), the function f(x) is an even function.