Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=x^(4)+5x^(6)-6 is even, odd or neither.
even
neither
odd

Determine whether the function f(x)=x4+5x66 f(x)=x^{4}+5 x^{6}-6 is even, odd or neither.\newlineeven\newlineneither\newlineodd

Full solution

Q. Determine whether the function f(x)=x4+5x66 f(x)=x^{4}+5 x^{6}-6 is even, odd or neither.\newlineeven\newlineneither\newlineodd
  1. Consider function f(x)f(x): Consider the function f(x)=x4+5x66f(x) = x^4 + 5x^6 - 6. To determine if the function is even, odd, or neither, we need to evaluate f(x)f(-x) and compare it to f(x)f(x). Substitute x-x for xx in f(x)f(x) to get f(x)f(-x). f(x)=(x)4+5(x)66f(-x) = (-x)^4 + 5(-x)^6 - 6
  2. Simplify f(x)f(-x): Simplify the right side of the function f(x)f(-x).
    f(x)=(x)4+5(x)66f(-x) = (-x)^4 + 5(-x)^6 - 6
    Since both x4x^4 and x6x^6 are even powers, (x)4=x4(-x)^4 = x^4 and (x)6=x6(-x)^6 = x^6.
    Therefore, f(x)f(-x) simplifies to:
    f(x)=x4+5x66f(-x) = x^4 + 5x^6 - 6
  3. Compare f(x)f(-x) with f(x)f(x): Compare f(x)f(-x) with f(x)f(x). We have f(x)=x4+5x66f(x) = x^4 + 5x^6 - 6 and f(x)=x4+5x66f(-x) = x^4 + 5x^6 - 6. Since f(x)=f(x)f(-x) = f(x), the function f(x)f(x) is an even function.

More problems from Even and odd functions