Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=-x^(3)+x^(5) is even, odd or neither.
even
odd
neither

Determine whether the function f(x)=x3+x5 f(x)=-x^{3}+x^{5} is even, odd or neither.\newlineeven\newlineodd\newlineneither

Full solution

Q. Determine whether the function f(x)=x3+x5 f(x)=-x^{3}+x^{5} is even, odd or neither.\newlineeven\newlineodd\newlineneither
  1. Evaluate f(x)f(-x): Consider the function f(x)=x3+x5f(x)=-x^{3}+x^{5}. To determine if the function is even, odd, or neither, we need to evaluate f(x)f(-x) and compare it to f(x)f(x). Substitute x-x for xx in f(x)=x3+x5f(x)=-x^{3}+x^{5}. f(x)=(x)3+(x)5f(-x)=-(-x)^{3}+(-x)^{5}
  2. Simplify function: Simplify the right side of the function.\newlinef(x)=(x3)+(x5)f(-x)=-(-x^3)+(-x^5)\newlinef(x)=(x×x×x)+(x×x×x×x×x)f(-x)=-(-x\times x\times x)+(-x\times x\times x\times x\times x)\newlinef(x)=(x3)+(x5)f(-x)=-(x^3)+(-x^5)\newlinef(x)=x3x5f(-x)=x^3-x^5
  3. Compare f(x)f(-x) with f(x)f(x): Compare f(x)f(-x) with f(x)f(x). We have f(x)=x3+x5f(x)=-x^3+x^5 and f(x)=x3x5f(-x)=x^3-x^5. Since f(x)=f(x)f(-x) = -f(x), f(x)f(x) is an odd function.

More problems from Even and odd functions