Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=x^(3)-5x-9x^(5) is even, odd or neither.
neither
even
odd

Determine whether the function f(x)=x35x9x5 f(x)=x^{3}-5 x-9 x^{5} is even, odd or neither.\newlineneither\newlineeven\newlineodd

Full solution

Q. Determine whether the function f(x)=x35x9x5 f(x)=x^{3}-5 x-9 x^{5} is even, odd or neither.\newlineneither\newlineeven\newlineodd
  1. Select function for f(x)f(-x): f(x)=x35x9x5f(x)= x^3-5x-9x^5\newlineSelect the function for f(x)f(-x).\newlineSubstitute x-x for xx in f(x)=x35x9x5f(x)= x^3-5x-9x^5.\newlinef(x)=(x)35(x)9(x)5f(-x)= (-x)^3-5(-x)-9(-x)^5
  2. Substitute x-x in f(x)f(x): f(x)=(x)35(x)9(x)5f(-x)= (-x)^3-5(-x)-9(-x)^5\newlineSimplify the right side of the function.\newlinef(x)=x3+5x+9x5f(-x)= -x^3+5x+9x^5
  3. Simplify f(x)f(-x): We have: \newlinef(x)=x35x9x5f(x)= x^3-5x-9x^5 \newlinef(x)=x3+5x+9x5f(-x)= -x^3+5x+9x^5 \newlineIs the function f(x)f(x) even, odd, or neither?\newlineWe have f(x)=x35x9x5f(x)= x^3-5x-9x^5 and f(x)=x3+5x+9x5f(-x)= -x^3+5x+9x^5.\newlineSince f(x)=f(x)f(-x) = -f(x), f(x)f(x) is an odd function.

More problems from Even and odd functions