Q. Determine whether the function f(x)=x3−5x−9x5 is even, odd or neither.neitherevenodd
Select function for f(−x):f(x)=x3−5x−9x5Select the function for f(−x).Substitute −x for x in f(x)=x3−5x−9x5.f(−x)=(−x)3−5(−x)−9(−x)5
Substitute −x in f(x):f(−x)=(−x)3−5(−x)−9(−x)5Simplify the right side of the function.f(−x)=−x3+5x+9x5
Simplify f(−x): We have: f(x)=x3−5x−9x5f(−x)=−x3+5x+9x5Is the function f(x) even, odd, or neither?We have f(x)=x3−5x−9x5 and f(−x)=−x3+5x+9x5.Since f(−x)=−f(x), f(x) is an odd function.