Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=x^(3)+3 is even, odd or neither.
even
odd
neither

Determine whether the function f(x)=x3+3 f(x)=x^{3}+3 is even, odd or neither.\newlineeven\newlineodd\newlineneither

Full solution

Q. Determine whether the function f(x)=x3+3 f(x)=x^{3}+3 is even, odd or neither.\newlineeven\newlineodd\newlineneither
  1. Define function f(x)f(x): Define the function f(x)f(x). We are given f(x)=x3+3f(x) = x^3 + 3. To determine if the function is even, odd, or neither, we need to evaluate f(x)f(-x) and compare it to f(x)f(x).
  2. Calculate f(x)f(-x): Calculate f(x)f(-x).\newlineSubstitute x-x for xx in f(x)=x3+3f(x) = x^3 + 3.\newlinef(x)=(x)3+3f(-x) = (-x)^3 + 3\newlinef(x)=x3+3f(-x) = -x^3 + 3
  3. Compare f(x)f(-x) with f(x)f(x): Compare f(x)f(-x) with f(x)f(x). We have f(x)=x3+3f(x) = x^3 + 3 and f(x)=x3+3f(-x) = -x^3 + 3. Since f(x)f(x)f(-x) \neq f(x) and f(x)f(x)f(-x) \neq -f(x), the function is neither even nor odd.

More problems from Even and odd functions