Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=-9x^(2)+1-x^(3) is even, odd or neither.
even
odd
neither

Determine whether the function f(x)=9x2+1x3 f(x)=-9 x^{2}+1-x^{3} is even, odd or neither.\newlineeven\newlineodd\newlineneither

Full solution

Q. Determine whether the function f(x)=9x2+1x3 f(x)=-9 x^{2}+1-x^{3} is even, odd or neither.\newlineeven\newlineodd\newlineneither
  1. Determine Function Type: To determine if the function f(x)f(x) is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x). If f(x)=f(x)f(-x) = f(x), then the function is even. If f(x)=f(x)f(-x) = -f(x), then the function is odd. If neither condition is met, the function is neither even nor odd.
  2. Calculate f(x)f(-x): First, we calculate f(x)f(-x) by substituting x-x for xx in the function f(x)=9x2+1x3f(x)=-9x^{2}+1-x^{3}.\newlinef(x)=9(x)2+1(x)3f(-x) = -9(-x)^{2} + 1 - (-x)^{3}
  3. Simplify f(x)f(-x): Simplify the expression for f(x)f(-x).
    f(x)=9x2+1(1)x3f(-x) = -9x^{2} + 1 - (-1)x^{3}
    f(x)=9x2+1+x3f(-x) = -9x^{2} + 1 + x^{3}
  4. Compare f(x)f(-x) with f(x)f(x): Now we compare f(x)f(-x) with f(x)f(x). We have f(x)=9x2+1x3f(x) = -9x^{2} + 1 - x^{3} and f(x)=9x2+1+x3f(-x) = -9x^{2} + 1 + x^{3}. Since f(x)f(-x) is not equal to f(x)f(x) and f(x)f(-x) is not equal to f(x)-f(x), the function f(x)f(x) is neither even nor odd.

More problems from Even and odd functions