Q. Determine whether the function f(x)=−9x2+1−x3 is even, odd or neither.evenoddneither
Determine Function Type: To determine if the function f(x) is even, odd, or neither, we need to compare f(x) with f(−x). If f(−x)=f(x), then the function is even. If f(−x)=−f(x), then the function is odd. If neither condition is met, the function is neither even nor odd.
Calculate f(−x): First, we calculate f(−x) by substituting −x for x in the function f(x)=−9x2+1−x3.f(−x)=−9(−x)2+1−(−x)3
Simplify f(−x): Simplify the expression for f(−x). f(−x)=−9x2+1−(−1)x3 f(−x)=−9x2+1+x3
Compare f(−x) with f(x): Now we compare f(−x) with f(x). We have f(x)=−9x2+1−x3 and f(−x)=−9x2+1+x3. Since f(−x) is not equal to f(x) and f(−x) is not equal to −f(x), the function f(x) is neither even nor odd.