Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=8x^(7)-3x^(5)+3x is even, odd or neither.
even
neither
odd

Determine whether the function f(x)=8x73x5+3x f(x)=8 x^{7}-3 x^{5}+3 x is even, odd or neither.\newlineeven\newlineneither\newlineodd

Full solution

Q. Determine whether the function f(x)=8x73x5+3x f(x)=8 x^{7}-3 x^{5}+3 x is even, odd or neither.\newlineeven\newlineneither\newlineodd
  1. Define function f(x)f(x): Define the function f(x)f(x). The given function is f(x)=8x73x5+3xf(x) = 8x^{7} - 3x^{5} + 3x. To determine if the function is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x).
  2. Calculate f(x)f(-x): Calculate f(x)f(-x).\newlineSubstitute x-x for xx in f(x)=8x73x5+3xf(x)=8x^{7}-3x^{5}+3x to get f(x)f(-x).\newlinef(x)=8(x)73(x)5+3(x)f(-x)=8(-x)^{7}-3(-x)^{5}+3(-x)\newlineNow simplify the right side of the function.\newlinef(x)=8(1)7x73(1)5x5+3(1)xf(-x)=8(-1)^7\cdot x^{7}-3(-1)^5\cdot x^{5}+3(-1)\cdot x\newlinef(x)=8x7+3x53xf(-x)=-8x^{7}+3x^{5}-3x
  3. Compare f(x)f(x) with f(x)f(-x): Compare f(x)f(x) with f(x)f(-x). We have: f(x)=8x73x5+3xf(x)=8x^{7}-3x^{5}+3x f(x)=8x7+3x53xf(-x)=-8x^{7}+3x^{5}-3x Since f(x)f(-x) is not equal to f(x)f(x) and f(x)f(-x) is not equal to f(x)-f(x), the function f(x)f(x) is neither even nor odd.

More problems from Even and odd functions