Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=8x^(4)+x^(2)+x^(6) is even, odd or neither.
odd
even
neither

Determine whether the function f(x)=8x4+x2+x6 f(x)=8 x^{4}+x^{2}+x^{6} is even, odd or neither.\newlineodd\newlineeven\newlineneither

Full solution

Q. Determine whether the function f(x)=8x4+x2+x6 f(x)=8 x^{4}+x^{2}+x^{6} is even, odd or neither.\newlineodd\newlineeven\newlineneither
  1. Select function for f(x)f(-x): f(x)=8x4+x2+x6f(x)=8x^{4}+x^{2}+x^{6}\newlineSelect the function for f(x)f(-x).\newlineSubstitute x-x for xx in f(x)=8x4+x2+x6f(x)=8x^{4}+x^{2}+x^{6}.\newlinef(x)=8(x)4+(x)2+(x)6f(-x)=8(-x)^{4}+(-x)^{2}+(-x)^{6}
  2. Substitute x-x in f(x)f(x): f(x)=8(x)4+(x)2+(x)6f(-x)=8(-x)^{4}+(-x)^{2}+(-x)^{6}\newlineSimplify the right side of the function.\newlinef(x)=8x4+x2+x6f(-x)=8x^{4}+x^{2}+x^{6}
  3. Simplify right side: We have: \newlinef(x)=8x4+x2+x6f(x)=8x^{4}+x^{2}+x^{6} \newlinef(x)=8x4+x2+x6f(-x)=8x^{4}+x^{2}+x^{6}\newlineIs the function f(x)f(x) even, odd, or neither?\newlineWe have f(x)=8x4+x2+x6f(x)=8x^{4}+x^{2}+x^{6} and f(x)=8x4+x2+x6f(-x)=8x^{4}+x^{2}+x^{6}.\newlineSince f(x)=f(x)f(-x) = f(x), f(x)f(x) is an even function.

More problems from Even and odd functions