Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=-8x^(3)-7x^(4) is even, odd or neither.
neither
even
odd

Determine whether the function f(x)=8x37x4 f(x)=-8 x^{3}-7 x^{4} is even, odd or neither.\newlineneither\newlineeven\newlineodd

Full solution

Q. Determine whether the function f(x)=8x37x4 f(x)=-8 x^{3}-7 x^{4} is even, odd or neither.\newlineneither\newlineeven\newlineodd
  1. Define function f(x)f(x): Define the function f(x)f(x). The given function is f(x)=8x37x4f(x) = -8x^{3} - 7x^{4}. To determine if the function is even, odd, or neither, we need to evaluate f(x)f(-x) and compare it to f(x)f(x).
  2. Calculate f(x)f(-x): Calculate f(x)f(-x).\newlineSubstitute x-x for xx in f(x)f(x) to get f(x)f(-x).\newlinef(x)=8(x)37(x)4f(-x)=-8(-x)^{3}-7(-x)^{4}\newlineNow simplify the expression.\newlinef(x)=8(x3)7(x4)f(-x)=-8(-x^3)-7(x^4)\newlinef(x)=8x37x4f(-x)=8x^3-7x^4
  3. Compare f(x)f(x) and f(x)f(-x): Compare f(x)f(x) and f(x)f(-x). We have the original function f(x)=8x37x4f(x) = -8x^{3} - 7x^{4} and the transformed function f(x)=8x37x4f(-x) = 8x^{3} - 7x^{4}. Now we compare f(x)f(x) with f(x)f(-x). Since f(x)f(-x) is not equal to f(x)f(x) and also not equal to f(x)f(-x)00, the function is neither even nor odd.

More problems from Even and odd functions