Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=-7x^(4)-6x^(2)+2x^(6) is even, odd or neither.
even
odd
neither

Determine whether the function f(x)=7x46x2+2x6 f(x)=-7 x^{4}-6 x^{2}+2 x^{6} is even, odd or neither.\newlineeven\newlineodd\newlineneither

Full solution

Q. Determine whether the function f(x)=7x46x2+2x6 f(x)=-7 x^{4}-6 x^{2}+2 x^{6} is even, odd or neither.\newlineeven\newlineodd\newlineneither
  1. Check Even Symmetry: To determine if the function is even, odd, or neither, we need to check the symmetry properties of the function. A function f(x)f(x) is even if f(x)=f(x)f(-x) = f(x) for all xx in the domain of ff. A function f(x)f(x) is odd if f(x)=f(x)f(-x) = -f(x) for all xx in the domain of ff. If neither condition is met, the function is neither even nor odd.
  2. Replace xx with x-x: First, we will check if the function is even. We do this by replacing xx with x-x in the function and simplifying.f(x)=7(x)46(x)2+2(x)6f(-x) = -7(-x)^{4} - 6(-x)^{2} + 2(-x)^{6}
  3. Simplify Expression: Now we simplify the expression by calculating the powers of x-x.
    f(x)=7((x)4)6((x)2)+2((x)6)f(-x) = -7((-x)^{4}) - 6((-x)^{2}) + 2((-x)^{6})
    Since the powers are all even, the negative signs will be canceled out.
    f(x)=7(x4)6(x2)+2(x6)f(-x) = -7(x^{4}) - 6(x^{2}) + 2(x^{6})
  4. Compare to Original Function: We compare this expression to the original function f(x)f(x).f(x)=7(x4)6(x2)+2(x6)f(-x) = -7(x^{4}) - 6(x^{2}) + 2(x^{6}) is the same as f(x)=7x46x2+2x6f(x) = -7x^{4} - 6x^{2} + 2x^{6}.Since f(x)=f(x)f(-x) = f(x), the function is even.

More problems from Even and odd functions