Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=-7x^(3)+x^(5) is even, odd or neither.
neither
odd
even

Determine whether the function f(x)=7x3+x5 f(x)=-7 x^{3}+x^{5} is even, odd or neither.\newlineneither\newlineodd\newlineeven

Full solution

Q. Determine whether the function f(x)=7x3+x5 f(x)=-7 x^{3}+x^{5} is even, odd or neither.\newlineneither\newlineodd\newlineeven
  1. Define f(x)f(x): Define the function f(x)f(x). The given function is f(x)=7x3+x5f(x) = -7x^{3} + x^{5}. To determine if the function is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x).
  2. Calculate f(x)f(-x): Calculate f(x)f(-x).\newlineSubstitute x-x for xx in f(x)f(x) to get f(x)f(-x).\newlinef(x)=7(x)3+(x)5f(-x) = -7(-x)^{3} + (-x)^{5}\newlinef(x)=7(x3)+(x5)f(-x) = -7(-x^3) + (-x^5)\newlinef(x)=7x3x5f(-x) = 7x^3 - x^5
  3. Compare f(x)f(x) with f(x)f(-x): Compare f(x)f(x) with f(x)f(-x). We have f(x)=7x3+x5f(x) = -7x^3 + x^5 and f(x)=7x3x5f(-x) = 7x^3 - x^5. Since f(x)f(-x) is not equal to f(x)f(x) and f(x)f(-x) is not equal to f(x)-f(x), the function is neither even nor odd.

More problems from Even and odd functions