Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=-7x^(3)-x^(4) is even, odd or neither.
even
odd
neither

Determine whether the function f(x)=7x3x4 f(x)=-7 x^{3}-x^{4} is even, odd or neither.\newlineeven\newlineodd\newlineneither

Full solution

Q. Determine whether the function f(x)=7x3x4 f(x)=-7 x^{3}-x^{4} is even, odd or neither.\newlineeven\newlineodd\newlineneither
  1. Define f(x)f(x): Define the function f(x)f(x). The given function is f(x)=7x3x4f(x) = -7x^{3} - x^{4}. To determine if the function is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x).
  2. Calculate f(x)f(-x): Calculate f(x)f(-x).\newlineSubstitute x-x for xx in f(x)f(x) to get f(x)f(-x).\newlinef(x)=7(x)3(x)4f(-x)=-7(-x)^{3}-(-x)^{4}\newlinef(x)=7(x3)x4f(-x)=-7(-x^3)-x^4
  3. Simplify f(x)f(-x): Simplify f(x)f(-x). Simplify the expression for f(x)f(-x). f(x)=7(x3)x4f(-x)=-7(-x^3)-x^4 f(x)=7x3x4f(-x)=7x^3-x^4
  4. Compare f(x)f(x) with f(x)f(-x): Compare f(x)f(x) with f(x)f(-x). We have f(x)=7x3x4f(x)=-7x^{3}-x^{4} and f(x)=7x3x4f(-x)=7x^{3}-x^{4}. Since f(x)f(-x) is not equal to f(x)f(x) and f(x)f(-x) is not equal to f(x)-f(x), the function is neither even nor odd.

More problems from Even and odd functions