Q. Determine whether the function f(x)=−6x6+1+x4 is even, odd or neither.evenoddneither
Determine Function Type: To determine if the function is even, odd, or neither, we need to compare f(x) with f(−x). If f(−x)=f(x), the function is even. If f(−x)=−f(x), the function is odd. If neither condition is met, the function is neither even nor odd.Let's start by finding f(−x).f(x)=−6x6+1+x4f(−x)=−6(−x)6+1+(−x)4
Find f(−x): Now we simplify f(−x). f(−x)=−6(−x)6+1+(−x)4 Since both x6 and x4 are even powers, (−x)6=x6 and (−x)4=x4. f(−x)=−6x6+1+x4
Simplify f(−x): We compare f(−x) with f(x). f(x)=−6x6+1+x4 f(−x)=−6x6+1+x4 Since f(−x)=f(x), the function f(x) is even.