Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=-6x^(6)+1+x^(4) is even, odd or neither.
even
odd
neither

Determine whether the function f(x)=6x6+1+x4 f(x)=-6 x^{6}+1+x^{4} is even, odd or neither.\newlineeven\newlineodd\newlineneither

Full solution

Q. Determine whether the function f(x)=6x6+1+x4 f(x)=-6 x^{6}+1+x^{4} is even, odd or neither.\newlineeven\newlineodd\newlineneither
  1. Determine Function Type: To determine if the function is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x). If f(x)=f(x)f(-x) = f(x), the function is even. If f(x)=f(x)f(-x) = -f(x), the function is odd. If neither condition is met, the function is neither even nor odd.\newlineLet's start by finding f(x)f(-x).\newlinef(x)=6x6+1+x4f(x) = -6x^6 + 1 + x^4\newlinef(x)=6(x)6+1+(x)4f(-x) = -6(-x)^6 + 1 + (-x)^4
  2. Find f(x)f(-x): Now we simplify f(x)f(-x).
    f(x)=6(x)6+1+(x)4f(-x) = -6(-x)^6 + 1 + (-x)^4
    Since both x6x^6 and x4x^4 are even powers, (x)6=x6(-x)^6 = x^6 and (x)4=x4(-x)^4 = x^4.
    f(x)=6x6+1+x4f(-x) = -6x^6 + 1 + x^4
  3. Simplify f(x)f(-x): We compare f(x)f(-x) with f(x)f(x).
    f(x)=6x6+1+x4f(x) = -6x^6 + 1 + x^4
    f(x)=6x6+1+x4f(-x) = -6x^6 + 1 + x^4
    Since f(x)=f(x)f(-x) = f(x), the function f(x)f(x) is even.

More problems from Even and odd functions