Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=6x^(5)-x^(2) is even, odd or neither.
even
neither
odd

Determine whether the function f(x)=6x5x2 f(x)=6 x^{5}-x^{2} is even, odd or neither.\newlineeven\newlineneither\newlineodd

Full solution

Q. Determine whether the function f(x)=6x5x2 f(x)=6 x^{5}-x^{2} is even, odd or neither.\newlineeven\newlineneither\newlineodd
  1. Define function f(x)f(x): Define the function f(x)f(x). The given function is f(x)=6x5x2f(x) = 6x^{5} - x^{2}. To determine if the function is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x).
  2. Calculate f(x)f(-x): Calculate f(x)f(-x).\newlineSubstitute x-x for xx in f(x)=6x5x2f(x)=6x^{5}-x^{2} to get f(x)f(-x).\newlinef(x)=6(x)5(x)2f(-x)=6(-x)^{5}-(-x)^{2}
  3. Simplify f(x)f(-x): Simplify f(x)f(-x). Simplify the expression for f(x)f(-x) by evaluating the powers of x-x. f(x)=6(1)5x5(1)2x2f(-x)=6(-1)^5x^{5}-(-1)^2x^{2} f(x)=6x5x2f(-x)=-6x^{5}-x^{2}
  4. Compare f(x)f(x) with f(x)f(-x): Compare f(x)f(x) with f(x)f(-x). We have f(x)=6x5x2f(x)=6x^{5}-x^{2} and f(x)=6x5x2f(-x)=-6x^{5}-x^{2}. Since f(x)f(-x) is not equal to f(x)f(x) and f(x)f(-x) is not equal to f(x)-f(x), the function is neither even nor odd.

More problems from Even and odd functions