Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=-5x^(4)-1-5x^(6) is even, odd or neither.
odd
neither
even

Determine whether the function f(x)=5x415x6 f(x)=-5 x^{4}-1-5 x^{6} is even, odd or neither.\newlineodd\newlineneither\newlineeven

Full solution

Q. Determine whether the function f(x)=5x415x6 f(x)=-5 x^{4}-1-5 x^{6} is even, odd or neither.\newlineodd\newlineneither\newlineeven
  1. Define function f(x)f(x): Define the function f(x)f(x). The given function is f(x)=5x415x6f(x) = -5x^{4} - 1 - 5x^{6}. To determine if the function is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x).
  2. Calculate f(x)f(-x): Calculate f(x)f(-x).\newlineSubstitute x-x for xx in f(x)f(x) to get f(x)f(-x).\newlinef(x)=5(x)415(x)6f(-x)=-5(-x)^{4}-1-5(-x)^{6}\newlineSimplify the powers of x-x.\newlinef(x)=5x415x6f(-x)=-5x^{4}-1-5x^{6}
  3. Compare f(x)f(x) with f(x)f(-x): Compare f(x)f(x) with f(x)f(-x). We have f(x)=5x415x6f(x)=-5x^{4}-1-5x^{6} and f(x)=5x415x6f(-x)=-5x^{4}-1-5x^{6}. Since f(x)=f(x)f(-x) = f(x), the function f(x)f(x) is an even function.

More problems from Even and odd functions