Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=-3-x^(4)+7x is even, odd or neither.
odd
neither
even

Determine whether the function f(x)=3x4+7x f(x)=-3-x^{4}+7 x is even, odd or neither.\newlineodd\newlineneither\newlineeven

Full solution

Q. Determine whether the function f(x)=3x4+7x f(x)=-3-x^{4}+7 x is even, odd or neither.\newlineodd\newlineneither\newlineeven
  1. Define function f(x)f(x): Define the function f(x)f(x). The given function is f(x)=3x4+7xf(x) = -3 - x^{4} + 7x. We need to determine if this function is even, odd, or neither.
  2. Check even function: Check if the function is even.\newlineAn even function satisfies the condition f(x)=f(x)f(x) = f(-x) for all xx in the domain.\newlineCalculate f(x)f(-x) by substituting x-x for xx in the function f(x)f(x).\newlinef(x)=3(x)4+7(x)f(-x) = -3-(-x)^{4}+7(-x)\newlinef(x)=3x47xf(-x) = -3-x^{4}-7x
  3. Compare f(x)f(x) and f(x)f(-x): Compare f(x)f(x) and f(x)f(-x). We have f(x)=3x4+7xf(x) = -3-x^{4}+7x and f(x)=3x47xf(-x) = -3-x^{4}-7x. Since f(x)f(-x) is not equal to f(x)f(x) (because of the opposite signs in front of the 7x7x term), the function is not even.
  4. Check odd function: Check if the function is odd.\newlineAn odd function satisfies the condition f(x)=f(x)f(-x) = -f(x) for all xx in the domain.\newlineWe already have f(x)=3x47xf(-x) = -3-x^{4}-7x.\newlineNow we need to check if this is equal to f(x)-f(x).\newlinef(x)=(3x4+7x)-f(x) = -(-3-x^{4}+7x)\newlinef(x)=3+x47x-f(x) = 3+x^{4}-7x
  5. Compare f(x)f(-x) and f(x)-f(x): Compare f(x)f(-x) and f(x)-f(x). We have f(x)=3x47xf(-x) = -3-x^{4}-7x and f(x)=3+x47x-f(x) = 3+x^{4}-7x. Since f(x)f(-x) is not equal to f(x)-f(x) (because the constant terms do not cancel out and the signs of the x4x^{4} terms are different), the function is not odd.
  6. Conclude function type: Conclude whether the function is even, odd, or neither.\newlineSince the function f(x)f(x) does not satisfy the conditions for being even or odd, we conclude that the function is neither even nor odd.

More problems from Even and odd functions