Q. Determine whether the function f(x)=2x−x5 is even, odd or neither.neitherevenodd
Define function f(x): Define the function f(x). The given function is f(x)=2x−x5. We need to determine if this function is even, odd, or neither by checking the symmetry properties.
Check even function: Check if the function is even.An even function satisfies the condition f(x)=f(−x) for all x in the domain.Calculate f(−x) by substituting −x for x in the function f(x).f(−x)=2(−x)−(−x)5f(−x)=−2x−(−x)5
Simplify f(−x): Simplify f(−x). Simplify the expression for f(−x) by evaluating the exponents. f(−x)=−2x−(−1)5×x5f(−x)=−2x+x5
Compare f(x) and f(−x): Compare f(x) and f(−x). We have the original function f(x)=2x−x5 and the transformed function f(−x)=−2x+x5. Since f(x)=f(−x), the function is not even.
Check odd function: Check if the function is odd.An odd function satisfies the condition f(−x)=−f(x) for all x in the domain.We already have f(−x)=−2x+x5 from Step 3.Now, calculate −f(x) by multiplying the original function by −1.−f(x)=−(2x−x5)−f(x)=−2x+x5
Compare f(−x) and −f(x): Compare f(−x) and −f(x). We have f(−x)=−2x+x5 from Step 3 and −f(x)=−2x+x5 from Step 5. Since f(−x)=−f(x), the function is odd.