Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=2x-x^(5) is even, odd or neither.
neither
even
odd

Determine whether the function f(x)=2xx5 f(x)=2 x-x^{5} is even, odd or neither.\newlineneither\newlineeven\newlineodd

Full solution

Q. Determine whether the function f(x)=2xx5 f(x)=2 x-x^{5} is even, odd or neither.\newlineneither\newlineeven\newlineodd
  1. Define function f(x)f(x): Define the function f(x)f(x). The given function is f(x)=2xx5f(x)=2x-x^{5}. We need to determine if this function is even, odd, or neither by checking the symmetry properties.
  2. Check even function: Check if the function is even.\newlineAn even function satisfies the condition f(x)=f(x)f(x) = f(-x) for all xx in the domain.\newlineCalculate f(x)f(-x) by substituting x-x for xx in the function f(x)f(x).\newlinef(x)=2(x)(x)5f(-x) = 2(-x) - (-x)^{5}\newlinef(x)=2x(x)5f(-x) = -2x - (-x)^5
  3. Simplify f(x)f(-x): Simplify f(x)f(-x). Simplify the expression for f(x)f(-x) by evaluating the exponents. f(x)=2x(1)5×x5f(-x) = -2x - (-1)^5 \times x^5 f(x)=2x+x5f(-x) = -2x + x^5
  4. Compare f(x)f(x) and f(x)f(-x): Compare f(x)f(x) and f(x)f(-x). We have the original function f(x)=2xx5f(x) = 2x - x^5 and the transformed function f(x)=2x+x5f(-x) = -2x + x^5. Since f(x)f(x)f(x) \neq f(-x), the function is not even.
  5. Check odd function: Check if the function is odd.\newlineAn odd function satisfies the condition f(x)=f(x)f(-x) = -f(x) for all xx in the domain.\newlineWe already have f(x)=2x+x5f(-x) = -2x + x^5 from Step 33.\newlineNow, calculate f(x)-f(x) by multiplying the original function by 1-1.\newlinef(x)=(2xx5)-f(x) = -(2x - x^5)\newlinef(x)=2x+x5-f(x) = -2x + x^5
  6. Compare f(x)f(-x) and f(x)-f(x): Compare f(x)f(-x) and f(x)-f(x). We have f(x)=2x+x5f(-x) = -2x + x^5 from Step 33 and f(x)=2x+x5-f(x) = -2x + x^5 from Step 55. Since f(x)=f(x)f(-x) = -f(x), the function is odd.

More problems from Even and odd functions