Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=-2x^(4)+x^(5) is even, odd or neither.
odd
even
neither

Determine whether the function f(x)=2x4+x5 f(x)=-2 x^{4}+x^{5} is even, odd or neither.\newlineodd\newlineeven\newlineneither

Full solution

Q. Determine whether the function f(x)=2x4+x5 f(x)=-2 x^{4}+x^{5} is even, odd or neither.\newlineodd\newlineeven\newlineneither
  1. Evaluate f(x)f(-x): To determine if the function is even, odd, or neither, we need to evaluate f(x)f(-x) and compare it to f(x)f(x). If f(x)=f(x)f(-x) = f(x), the function is even. If f(x)=f(x)f(-x) = -f(x), the function is odd. If neither condition is met, the function is neither even nor odd.\newlineLet's start by finding f(x)f(-x).\newlinef(x)=2(x)4+(x)5f(-x) = -2(-x)^{4} + (-x)^{5}
  2. Simplify f(x)f(-x): Now we simplify the expression for f(x)f(-x).f(x)=2(x4)x5f(-x) = -2(x^4) - x^5
  3. Compare f(x)f(-x) with f(x)f(x): Next, we compare f(x)f(-x) with f(x)f(x). We have f(x)=2x4+x5f(x) = -2x^4 + x^5 and f(x)=2x4x5f(-x) = -2x^4 - x^5. Since f(x)f(-x) is not equal to f(x)f(x) and f(x)f(-x) is not equal to f(x)-f(x), the function is neither even nor odd.

More problems from Even and odd functions