Q. Determine whether the function f(x)=1−x4+6x6 is even, odd or neither.oddevenneither
Identify Function Type: To determine if the function is even, odd, or neither, we need to compare f(x) with f(−x). If f(−x)=f(x), the function is even. If f(−x)=−f(x), the function is odd. If neither condition is met, the function is neither even nor odd.
Substitute −x: First, let's find f(−x) by substituting −x for x in the function f(x)=1−x4+6x6.f(−x)=1−(−x)4+6(−x)6
Simplify f(−x): Now, simplify the expression for f(−x). f(−x)=1−((−x)4)+6((−x)6) f(−x)=1−(x4)+6(x6) f(−x)=1−x4+6x6
Compare f(x) and f(−x): We have the original function f(x)=1−x4+6x6 and the transformed function f(−x)=1−(−x)4+6(−x)6. Comparing f(x) and f(−x), we see that they are identical.f(x)=f(−x)
Conclusion: Since f(−x)=f(x), the function f(x) is an even function.