Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=1-x^(4)+6x^(6) is even, odd or neither.
odd
even
neither

Determine whether the function f(x)=1x4+6x6 f(x)=1-x^{4}+6 x^{6} is even, odd or neither.\newlineodd\newlineeven\newlineneither

Full solution

Q. Determine whether the function f(x)=1x4+6x6 f(x)=1-x^{4}+6 x^{6} is even, odd or neither.\newlineodd\newlineeven\newlineneither
  1. Identify Function Type: To determine if the function is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x). If f(x)=f(x)f(-x) = f(x), the function is even. If f(x)=f(x)f(-x) = -f(x), the function is odd. If neither condition is met, the function is neither even nor odd.
  2. Substitute x-x: First, let's find f(x)f(-x) by substituting x-x for xx in the function f(x)=1x4+6x6f(x)=1-x^{4}+6x^{6}.\newlinef(x)=1(x)4+6(x)6f(-x) = 1-(-x)^{4}+6(-x)^{6}
  3. Simplify f(x)f(-x): Now, simplify the expression for f(x)f(-x).
    f(x)=1((x)4)+6((x)6)f(-x) = 1-((-x)^{4})+6((-x)^{6})
    f(x)=1(x4)+6(x6)f(-x) = 1-(x^4)+6(x^6)
    f(x)=1x4+6x6f(-x) = 1-x^4+6x^6
  4. Compare f(x)f(x) and f(x)f(-x): We have the original function f(x)=1x4+6x6f(x)=1-x^{4}+6x^{6} and the transformed function f(x)=1(x)4+6(x)6f(-x)=1-(-x)^{4}+6(-x)^{6}. Comparing f(x)f(x) and f(x)f(-x), we see that they are identical.\newlinef(x)=f(x)f(x) = f(-x)
  5. Conclusion: Since f(x)=f(x)f(-x) = f(x), the function f(x)f(x) is an even function.

More problems from Even and odd functions