Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

David measures a line to be 10.08 in long. If the actual measurement is 
10in, find David's relative error to the nearest hundredth.
Answer:

David measures a line to be 1010.0808 in long. If the actual measurement is 10in 10 \mathrm{in} , find David's relative error to the nearest hundredth.\newlineAnswer:

Full solution

Q. David measures a line to be 1010.0808 in long. If the actual measurement is 10in 10 \mathrm{in} , find David's relative error to the nearest hundredth.\newlineAnswer:
  1. Understand relative error: Understand the concept of relative error. Relative error is the absolute error divided by the actual measurement, often expressed as a percentage. The absolute error is the difference between the measured value and the actual value.
  2. Calculate absolute error: Calculate the absolute error.\newlineAbsolute error = Measured ValueActual Value|\text{Measured Value} - \text{Actual Value}|\newlineAbsolute error = 10.08 in10 in|10.08 \text{ in} - 10 \text{ in}|\newlineAbsolute error = 0.08 in|0.08 \text{ in}|\newlineAbsolute error = 0.08 in0.08 \text{ in}
  3. Calculate relative error: Calculate the relative error.\newlineRelative error = (Absolute error/Actual Value)×100(\text{Absolute error} / \text{Actual Value}) \times 100 (to get the percentage)\newlineRelative error = (0.08in/10in)×100(0.08 \, \text{in} / 10 \, \text{in}) \times 100\newlineRelative error = 0.008×1000.008 \times 100\newlineRelative error = 0.8%0.8\%
  4. Round relative error: Round the relative error to the nearest hundredth.\newlineSince the relative error is already at the hundredth place as 0.8%0.8\%, we do not need to round it further.

More problems from Percent error