Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

D=[[2,3],[1,1],[5,-2]]" and "F=[[2,5],[2,2]]
Let 
H=DF. Find 
H.

H=[]

D=[2amp;31amp;15amp;2] and F=[2amp;52amp;2] \mathrm{D}=\left[\begin{array}{rr} 2 & 3 \\ 1 & 1 \\ 5 & -2 \end{array}\right] \text { and } \mathrm{F}=\left[\begin{array}{ll} 2 & 5 \\ 2 & 2 \end{array}\right] \newlineLet H=DF \mathrm{H}=\mathrm{DF} . Find H \mathrm{H} .\newlineH= \mathbf{H}=

Full solution

Q. D=[231152] and F=[2522] \mathrm{D}=\left[\begin{array}{rr} 2 & 3 \\ 1 & 1 \\ 5 & -2 \end{array}\right] \text { and } \mathrm{F}=\left[\begin{array}{ll} 2 & 5 \\ 2 & 2 \end{array}\right] \newlineLet H=DF \mathrm{H}=\mathrm{DF} . Find H \mathrm{H} .\newlineH= \mathbf{H}=
  1. Define Matrices D and F: Define the matrices D and F. Matrix D is a 3×23 \times 2 matrix given by D=[2amp;3 1amp;1 5amp;2]D=\left[\begin{array}{cc}2 & 3 \ 1 & 1 \ 5 & -2\end{array}\right]. Matrix F is a 2×22 \times 2 matrix given by F=[2amp;5 2amp;2]F=\left[\begin{array}{cc}2 & 5 \ 2 & 2\end{array}\right]. To find the product HH of DD and FF, we need to perform matrix multiplication.
  2. Verify Matrix Multiplication: Verify if matrix multiplication is possible. Matrix multiplication is possible if the number of columns in the first matrix is equal to the number of rows in the second matrix. Matrix DD has 22 columns and matrix FF has 22 rows, so multiplication is possible.
  3. Perform Matrix Multiplication: Perform the matrix multiplication.\newlineTo multiply DD by FF, we take the dot product of the rows of DD with the columns of FF. The resulting matrix HH will have the same number of rows as DD and the same number of columns as FF, so HH will be a 3×23 \times 2 matrix.\newlineFor H[1,1]H[1,1], we calculate FF00.\newlineFor FF11, we calculate FF22.\newlineFor FF33, we calculate FF44.\newlineFor FF55, we calculate FF66.\newlineFor FF77, we calculate FF88.\newlineFor FF99, we calculate DD00.\newlineSo the matrix HH is:\newlineDD22

More problems from Compare linear, exponential, and quadratic growth