Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Prove that cot2θ+tan2θ=2sin4θ\cot 2\theta + \tan 2\theta = 2\sin 4\theta

Full solution

Q. Prove that cot2θ+tan2θ=2sin4θ\cot 2\theta + \tan 2\theta = 2\sin 4\theta
  1. Rewrite cot2θ\cot 2\theta: Rewrite cot2θ\cot 2\theta in terms of tan2θ\tan 2\theta.\newlinecot2θ=1tan2θ\cot 2\theta = \frac{1}{\tan 2\theta}
  2. Add cot2θ\cot^2\theta and tan2θ\tan^2\theta: Add cot2θ\cot^2\theta and tan2θ\tan^2\theta.\newlinecot2θ+tan2θ=1tan2θ+tan2θ\cot^2\theta + \tan^2\theta = \frac{1}{\tan^2\theta} + \tan^2\theta
  3. Find common denominator: Find a common denominator and combine the terms.\newline(1+tan2(2θ))/tan(2θ)=2sin(4θ)(1 + \tan^2(2\theta)) / \tan(2\theta) = 2\sin(4\theta)
  4. Use Pythagorean identity: Use the Pythagorean identity: 1+tan2(2θ)=sec2(2θ)1 + \tan^2(2\theta) = \sec^2(2\theta).
    sec2(2θ)tan2θ=2sin4θ\frac{\sec^2(2\theta)}{\tan 2\theta} = 2\sin 4\theta
  5. Convert sec2(2θ)\sec^2(2\theta): Convert sec2(2θ)\sec^2(2\theta) to 1cos2(2θ)\frac{1}{\cos^2(2\theta)} and simplify.1cos2(2θ)sin2θcos2θ=2sin4θ\frac{\frac{1}{\cos^2(2\theta)}}{\frac{\sin 2\theta}{\cos 2\theta}} = 2\sin 4\theta
  6. Multiply by cos2(2θ)\cos^2(2\theta): Multiply both sides by cos2(2θ)\cos^2(2\theta) to clear the fraction.\newlinesin2θ=2sin4θcos2(2θ)\sin 2\theta = 2\sin 4\theta \cdot \cos^2(2\theta)
  7. Use double angle identity: Use the double angle identity for sine: sin4θ=2sin2θcos2θ\sin 4\theta = 2\sin 2\theta \cdot \cos 2\theta. sin2θ=22sin2θcos2θcos2(2θ)\sin 2\theta = 2 \cdot 2\sin 2\theta \cdot \cos 2\theta \cdot \cos^2(2\theta)
  8. Divide by sin2θ\sin 2\theta: Divide both sides by sin2θ\sin 2\theta, assuming sin2θ\sin 2\theta is not zero.\newline1=4cos2θcos2(2θ)1 = 4 \cdot \cos 2\theta \cdot \cos^2(2\theta)
  9. Use Pythagorean identity: Use the Pythagorean identity: cos2(2θ)=1sin2(2θ)\cos^2(2\theta) = 1 - \sin^2(2\theta). \newline1=4cos2(θ)(1sin2(2θ))1 = 4 \cdot \cos^2(\theta) \cdot (1 - \sin^2(2\theta))

More problems from Describe the graph of a linear equation