Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Prove that
cot
2
θ
+
tan
2
θ
=
2
sin
4
θ
\cot 2\theta + \tan 2\theta = 2\sin 4\theta
cot
2
θ
+
tan
2
θ
=
2
sin
4
θ
View step-by-step help
Home
Math Problems
Grade 8
Describe the graph of a linear equation
Full solution
Q.
Prove that
cot
2
θ
+
tan
2
θ
=
2
sin
4
θ
\cot 2\theta + \tan 2\theta = 2\sin 4\theta
cot
2
θ
+
tan
2
θ
=
2
sin
4
θ
Rewrite
cot
2
θ
\cot 2\theta
cot
2
θ
:
Rewrite
cot
2
θ
\cot 2\theta
cot
2
θ
in terms of
tan
2
θ
\tan 2\theta
tan
2
θ
.
\newline
cot
2
θ
=
1
tan
2
θ
\cot 2\theta = \frac{1}{\tan 2\theta}
cot
2
θ
=
t
a
n
2
θ
1
Add
cot
2
θ
\cot^2\theta
cot
2
θ
and
tan
2
θ
\tan^2\theta
tan
2
θ
:
Add
cot
2
θ
\cot^2\theta
cot
2
θ
and
tan
2
θ
\tan^2\theta
tan
2
θ
.
\newline
cot
2
θ
+
tan
2
θ
=
1
tan
2
θ
+
tan
2
θ
\cot^2\theta + \tan^2\theta = \frac{1}{\tan^2\theta} + \tan^2\theta
cot
2
θ
+
tan
2
θ
=
t
a
n
2
θ
1
+
tan
2
θ
Find common denominator:
Find a common denominator and combine the terms.
\newline
(
1
+
tan
2
(
2
θ
)
)
/
tan
(
2
θ
)
=
2
sin
(
4
θ
)
(1 + \tan^2(2\theta)) / \tan(2\theta) = 2\sin(4\theta)
(
1
+
tan
2
(
2
θ
))
/
tan
(
2
θ
)
=
2
sin
(
4
θ
)
Use Pythagorean identity:
Use the Pythagorean identity:
1
+
tan
2
(
2
θ
)
=
sec
2
(
2
θ
)
1 + \tan^2(2\theta) = \sec^2(2\theta)
1
+
tan
2
(
2
θ
)
=
sec
2
(
2
θ
)
.
sec
2
(
2
θ
)
tan
2
θ
=
2
sin
4
θ
\frac{\sec^2(2\theta)}{\tan 2\theta} = 2\sin 4\theta
t
a
n
2
θ
s
e
c
2
(
2
θ
)
=
2
sin
4
θ
Convert
sec
2
(
2
θ
)
\sec^2(2\theta)
sec
2
(
2
θ
)
:
Convert
sec
2
(
2
θ
)
\sec^2(2\theta)
sec
2
(
2
θ
)
to
1
cos
2
(
2
θ
)
\frac{1}{\cos^2(2\theta)}
c
o
s
2
(
2
θ
)
1
and simplify.
1
cos
2
(
2
θ
)
sin
2
θ
cos
2
θ
=
2
sin
4
θ
\frac{\frac{1}{\cos^2(2\theta)}}{\frac{\sin 2\theta}{\cos 2\theta}} = 2\sin 4\theta
c
o
s
2
θ
s
i
n
2
θ
c
o
s
2
(
2
θ
)
1
=
2
sin
4
θ
Multiply by
cos
2
(
2
θ
)
\cos^2(2\theta)
cos
2
(
2
θ
)
:
Multiply both sides by
cos
2
(
2
θ
)
\cos^2(2\theta)
cos
2
(
2
θ
)
to clear the
fraction
.
\newline
sin
2
θ
=
2
sin
4
θ
⋅
cos
2
(
2
θ
)
\sin 2\theta = 2\sin 4\theta \cdot \cos^2(2\theta)
sin
2
θ
=
2
sin
4
θ
⋅
cos
2
(
2
θ
)
Use double angle identity:
Use the double angle identity for sine:
sin
4
θ
=
2
sin
2
θ
⋅
cos
2
θ
\sin 4\theta = 2\sin 2\theta \cdot \cos 2\theta
sin
4
θ
=
2
sin
2
θ
⋅
cos
2
θ
.
sin
2
θ
=
2
⋅
2
sin
2
θ
⋅
cos
2
θ
⋅
cos
2
(
2
θ
)
\sin 2\theta = 2 \cdot 2\sin 2\theta \cdot \cos 2\theta \cdot \cos^2(2\theta)
sin
2
θ
=
2
⋅
2
sin
2
θ
⋅
cos
2
θ
⋅
cos
2
(
2
θ
)
Divide by
sin
2
θ
\sin 2\theta
sin
2
θ
:
Divide both sides by
sin
2
θ
\sin 2\theta
sin
2
θ
, assuming
sin
2
θ
\sin 2\theta
sin
2
θ
is not zero.
\newline
1
=
4
⋅
cos
2
θ
⋅
cos
2
(
2
θ
)
1 = 4 \cdot \cos 2\theta \cdot \cos^2(2\theta)
1
=
4
⋅
cos
2
θ
⋅
cos
2
(
2
θ
)
Use Pythagorean identity:
Use the Pythagorean identity:
cos
2
(
2
θ
)
=
1
−
sin
2
(
2
θ
)
\cos^2(2\theta) = 1 - \sin^2(2\theta)
cos
2
(
2
θ
)
=
1
−
sin
2
(
2
θ
)
.
\newline
1
=
4
⋅
cos
2
(
θ
)
⋅
(
1
−
sin
2
(
2
θ
)
)
1 = 4 \cdot \cos^2(\theta) \cdot (1 - \sin^2(2\theta))
1
=
4
⋅
cos
2
(
θ
)
⋅
(
1
−
sin
2
(
2
θ
))
More problems from Describe the graph of a linear equation
Question
Does the point
(
0
,
4
)
(0, 4)
(
0
,
4
)
satisfy the equation
y
=
x
y = x
y
=
x
?
?
?
Get tutor help
Posted 7 months ago
Question
Find the slope of the line
y
=
−
4
x
+
2
5
y = -4x + \frac{2}{5}
y
=
−
4
x
+
5
2
.
Get tutor help
Posted 7 months ago
Question
Rewrite the following equation in slope-intercept form.
\newline
y
+
8
=
−
8
(
x
−
10
)
y + 8 = -8(x - 10)
y
+
8
=
−
8
(
x
−
10
)
Get tutor help
Posted 7 months ago
Question
Find the
y
y
y
-intercept of the line
14
x
−
16
y
=
−
10
14x - 16y = -10
14
x
−
16
y
=
−
10
.
\newline
Write your answer as an integer or decimal or fraction, not as an ordered pair.
Get tutor help
Posted 7 months ago
Question
Line
q
q
q
has a slope of
−
2
3
\frac{-2}{3}
3
−
2
. Line
r
r
r
is perpendicular to
q
q
q
. What is the slope of line
r
r
r
?
Get tutor help
Posted 7 months ago
Question
Find the slope of the line
y
+
3
=
−
1
18
(
x
+
6
)
y + 3 = -\frac{1}{18}(x + 6)
y
+
3
=
−
18
1
(
x
+
6
)
.
\newline
Get tutor help
Posted 7 months ago
Question
Line
p
p
p
has an equation of
y
=
−
8
x
+
6
y = -8x + 6
y
=
−
8
x
+
6
. Line
q
q
q
, which is perpendicular to line
p
p
p
, includes the point
(
2
,
−
2
)
(2, -2)
(
2
,
−
2
)
. What is the equation of line
q
q
q
?
?
?
\newline
Write the equation in slope-intercept form.
Get tutor help
Posted 7 months ago
Question
Is the graph of this equation a horizontal or vertical line?
\newline
x
=
7
x = 7
x
=
7
Get tutor help
Posted 7 months ago
Question
Determine the standard form of the following equation:
\newline
y
=
−
10
x
+
7
y = -10x + 7
y
=
−
10
x
+
7
Get tutor help
Posted 7 months ago
Question
A line with a slope of
9
9
9
passes through the point
(
9
,
9
)
(9,9)
(
9
,
9
)
. What is its equation in point-slope form?
Get tutor help
Posted 7 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant