Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the function f(x)=-(1)/(3)(x-2)^(2)+1. Algebraically determine which of the following are the zeros for f(x). Select all correct answers below.
(A) 0
(B) 3+sqrt2
(C) 4
(D) 2+sqrt3
(E) 3-sqrt2
(F) 2-sqrt3

Consider the function f(x)=13(x2)2+1 f(x)=-\frac{1}{3}(x-2)^{2}+1 . Algebraically determine which of the following are the zeros for f(x) f(x) . Select all correct answers below.\newline(A) 00\newline(B) 3+2 3+\sqrt{2} \newline(C) 44\newline(D) 2+3 2+\sqrt{3} \newline(E) 32 3-\sqrt{2} \newline(F) 23 2-\sqrt{3}

Full solution

Q. Consider the function f(x)=13(x2)2+1 f(x)=-\frac{1}{3}(x-2)^{2}+1 . Algebraically determine which of the following are the zeros for f(x) f(x) . Select all correct answers below.\newline(A) 00\newline(B) 3+2 3+\sqrt{2} \newline(C) 44\newline(D) 2+3 2+\sqrt{3} \newline(E) 32 3-\sqrt{2} \newline(F) 23 2-\sqrt{3}
  1. Define Zero of Function: Understand what a zero of a function is.\newlineA zero of a function is a value of xx for which the function equals zero. To find the zeros of f(x)f(x), we need to solve the equation f(x)=0f(x) = 0.
  2. Set Function Equal: Set the function equal to 00 and solve for xx. We have f(x)=(13)(x2)2+1f(x) = -(\frac{1}{3})(x - 2)^2 + 1. To find the zeros, we set f(x)f(x) to 00: 0=(13)(x2)2+10 = -(\frac{1}{3})(x - 2)^2 + 1
  3. Isolate Squared Term: Isolate the squared term.\newlineAdd (13)(x2)2(\frac{1}{3})(x - 2)^2 to both sides to isolate the squared term:\newline(13)(x2)2=1(\frac{1}{3})(x - 2)^2 = 1
  4. Eliminate Fraction: Multiply both sides by 33 to eliminate the fraction.3×(13)(x2)2=3×13 \times \left(\frac{1}{3}\right)(x - 2)^2 = 3 \times 1(x2)2=3(x - 2)^2 = 3
  5. Take Square Root: Take the square root of both sides.\newline(x2)2=±3\sqrt{(x - 2)^2} = \pm\sqrt{3}\newlinex2=±3x - 2 = \pm\sqrt{3}
  6. Solve for x: Solve for x by adding 22 to both sides.\newlinex=2±3x = 2 \pm \sqrt{3}
  7. Identify Solutions: Identify the two solutions.\newlineThe two solutions are:\newlinex=2+3x = 2 + \sqrt{3}\newlinex=23x = 2 - \sqrt{3}
  8. Check Answer Choices: Check the answer choices against the solutions.\newlineThe correct answer choices that match our solutions are:\newlineD) 2+32 + \sqrt{3}\newlineF) 232 - \sqrt{3}

More problems from Transformations of functions