Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the following problem:
The temperature of a cup of cocoa is decreasing at a rate of 
r(t)=-5.5e^(-0.09 t) degrees Celsius per minute (where 
t is the time in minutes). At time 
t=2, the temperature of the cocoa is 72 degrees Celsius. What is the temperature of the cocoa at 
t=10 minutes?
Which expression can we use to solve the problem?
Choose 1 answer:
(A) 
int r(t)dt
(B) 
int_(2)^(10)r(t)dt
(C) 
int_(2)^(10)r(t)dt+72
(D) 
int r(t)dt+72

Consider the following problem:\newlineThe temperature of a cup of cocoa is decreasing at a rate of r(t)=5.5e0.09t r(t)=-5.5 e^{-0.09 t} degrees Celsius per minute (where t t is the time in minutes). At time t=2 t=2 , the temperature of the cocoa is 7272 degrees Celsius. What is the temperature of the cocoa at t=10 t=10 minutes?\newlineWhich expression can we use to solve the problem?\newlineChoose 11 answer:\newline(A) r(t)dt \int r(t) d t \newline(B) 210r(t)dt \int_{2}^{10} r(t) d t \newline(C) 210r(t)dt+72 \int_{2}^{10} r(t) d t+72 \newline(D) r(t)dt+72 \int r(t) d t+72

Full solution

Q. Consider the following problem:\newlineThe temperature of a cup of cocoa is decreasing at a rate of r(t)=5.5e0.09t r(t)=-5.5 e^{-0.09 t} degrees Celsius per minute (where t t is the time in minutes). At time t=2 t=2 , the temperature of the cocoa is 7272 degrees Celsius. What is the temperature of the cocoa at t=10 t=10 minutes?\newlineWhich expression can we use to solve the problem?\newlineChoose 11 answer:\newline(A) r(t)dt \int r(t) d t \newline(B) 210r(t)dt \int_{2}^{10} r(t) d t \newline(C) 210r(t)dt+72 \int_{2}^{10} r(t) d t+72 \newline(D) r(t)dt+72 \int r(t) d t+72
  1. Understand the problem: Understand the problem.\newlineWe are given the rate of change of temperature of the cocoa as a function of time, r(t)=5.5e0.09tr(t)=-5.5e^{-0.09 t}, and the temperature at t=2t=2 minutes, which is 7272 degrees Celsius. We need to find the temperature at t=10t=10 minutes.
  2. Determine expression: Determine the correct expression to use.\newlineTo find the temperature at t=10t=10 minutes, we need to integrate the rate of change from t=2t=2 to t=10t=10 and add the initial temperature at t=2t=2. This is because the integral of the rate of change gives us the change in temperature, and adding the initial temperature gives us the final temperature.
  3. Choose correct expression: Choose the correct expression.\newlineThe correct expression to use is the integral of the rate of change from t=2t=2 to t=10t=10 plus the initial temperature at t=2t=2. This corresponds to choice (C) 210r(t)dt+72\int_{2}^{10}r(t)\,dt+72.
  4. Calculate the integral: Calculate the integral.\newlineWe need to calculate the integral of r(t)r(t) from t=2t=2 to t=10t=10 and then add 7272 degrees Celsius to find the final temperature.\newlineThe integral of r(t)r(t) from t=2t=2 to t=10t=10 is:\newline210(5.5e0.09t)dt\int_{2}^{10}(-5.5e^{-0.09 t})dt
  5. Perform the integration: Perform the integration.\newlineTo integrate r(t)r(t), we use the antiderivative of e(0.09t)e^{(-0.09 t)}, which is (10.09)e(0.09t)(-\frac{1}{0.09})e^{(-0.09 t)}. We then evaluate this from t=2t=2 to t=10t=10 and multiply by 5.5-5.5.\newlineSo, the integral becomes:\newline5.5×[(10.09)e(0.09t)]-5.5 \times [(-\frac{1}{0.09})e^{(-0.09 t)}] from t=2t=2 to t=10t=10
  6. Evaluate at bounds: Evaluate the integral at the bounds.\newlineFirst, evaluate the antiderivative at t=10t=10:\newline5.5×[(10.09)e(0.09×10)]-5.5 \times \left[\left(-\frac{1}{0.09}\right)e^{(-0.09 \times 10)}\right]\newlineThen, evaluate the antiderivative at t=2t=2:\newline5.5×[(10.09)e(0.09×2)]-5.5 \times \left[\left(-\frac{1}{0.09}\right)e^{(-0.09 \times 2)}\right]
  7. Subtract and add: Subtract the evaluations and add the initial temperature.\newlineSubtract the evaluation at t=2t=2 from the evaluation at t=10t=10 and then add 7272 degrees Celsius to find the final temperature.\newlineTemperature at t=10t=10 = 5.5[(1/0.09)e(0.0910)(1/0.09)e(0.092)]+72-5.5 * [(-1/0.09)e^{(-0.09 * 10)} - (-1/0.09)e^{(-0.09 * 2)}] + 72
  8. Calculate final temperature: Calculate the final temperature.\newlineNow we perform the actual calculations:\newlineTemperature at t=10t=10 = 5.5×[(1/0.09)(e0.9e0.18)]+72-5.5 \times [(-1/0.09)(e^{-0.9} - e^{-0.18})] + 72
  9. Correct exponent and re-evaluate: Correct the calculation of the exponent and re-evaluate the integral.\newlineCorrecting the exponents, we have:\newlineTemperature at t=10t=10 = 5.5[(1/0.09)(e0.9e0.18)]+72-5.5 * [(-1/0.09)(e^{-0.9} - e^{-0.18})] + 72\newlineNow, let's calculate the values correctly:\newlineTemperature at t=10t=10 = 5.5[(1/0.09)(e0.9e0.18)]+72-5.5 * [(-1/0.09)(e^{-0.9} - e^{-0.18})] + 72
  10. Perform final calculation: Perform the final calculation.\newlineNow we calculate the numerical values:\newlineTemperature at t=10t=10 = 5.5[(1/0.09)(0.40660.8353)]+72-5.5 * [(-1/0.09)(0.4066 - 0.8353)] + 72\newlineTemperature at t=10t=10 = 5.5[(1/0.09)(0.4287)]+72-5.5 * [(-1/0.09)(-0.4287)] + 72\newlineTemperature at t=10t=10 = 5.5[47.6333]+72-5.5 * [47.6333] + 72\newlineTemperature at t=10t=10 = 261.98315+72-261.98315 + 72\newlineTemperature at t=10t=10 = 189.98315-189.98315 degrees Celsius
  11. Correct numerical values: Correct the numerical values and perform the correct arithmetic.\newlineCorrecting the numerical values and performing the correct arithmetic, we have:\newlineTemperature at t=10t=10 = 5.5×[(1/0.09)(e0.9e0.18)]+72-5.5 \times [(-1/0.09)(e^{-0.9} - e^{-0.18})] + 72\newlineFirst, calculate the values of the exponentials correctly:\newlinee0.90.4066e^{-0.9} \approx 0.4066\newlinee0.180.8353e^{-0.18} \approx 0.8353\newlineNow, calculate the change in temperature:\newlineChange in temperature = 5.5×[(1/0.09)(0.40660.8353)]-5.5 \times [(-1/0.09)(0.4066 - 0.8353)]\newlineChange in temperature = 5.5×[(1/0.09)(0.4287)]-5.5 \times [(-1/0.09)(-0.4287)]\newlineChange in temperature = 5.5×47.6333-5.5 \times 47.6333\newlineChange in temperature = 261-261.9831598315\newlineNow, add the initial temperature:\newlineTemperature at t=10t=10 = 261.98315+72-261.98315 + 72\newlineTemperature at t=10t=10 = 5.5×[(1/0.09)(e0.9e0.18)]+72-5.5 \times [(-1/0.09)(e^{-0.9} - e^{-0.18})] + 7200 degrees Celsius\newlineThis is still incorrect, as the temperature cannot be negative. Let's correct the arithmetic once more.
  12. Correct arithmetic: Correct the arithmetic and find the final temperature.\newlineCorrecting the arithmetic, we have:\newlineChange in temperature = 5.5×[(1/0.09)(e0.9e0.18)]-5.5 \times [(-1/0.09)(e^{-0.9} - e^{-0.18})]\newlineChange in temperature = 5.5×[(1/0.09)(0.4287)]-5.5 \times [(-1/0.09)(-0.4287)]\newlineChange in temperature = 5.5×47.6333-5.5 \times 47.6333\newlineChange in temperature = 261.98315-261.98315\newlineThis value is the change in temperature from t=2t=2 to t=10t=10, not the final temperature. To find the final temperature, we need to add the initial temperature at t=2t=2, which is 7272 degrees Celsius:\newlineTemperature at t=10t=10 = 72261.9831572 - 261.98315\newlineTemperature at t=10t=10 = 5.5×[(1/0.09)(0.4287)]-5.5 \times [(-1/0.09)(-0.4287)]11 degrees Celsius\newlineThis is still incorrect, as the temperature cannot be negative. The error lies in the sign of the change in temperature. Since the rate of change is negative, the temperature is decreasing, so we should be subtracting the change in temperature from the initial temperature, not adding it. Let's correct this and find the final temperature.
  13. Correct arithmetic and find: Correct the sign error and find the final temperature.\newlineCorrecting the sign error, we have:\newlineChange in temperature = 5.5×[(1/0.09)(e0.9e0.18)]-5.5 \times [(-1/0.09)(e^{-0.9} - e^{-0.18})]\newlineChange in temperature = 5.5×[(1/0.09)(0.4287)]-5.5 \times [(-1/0.09)(-0.4287)]\newlineChange in temperature = 5.5×47.6333-5.5 \times 47.6333\newlineChange in temperature = 261.98315-261.98315\newlineNow, subtract the change in temperature from the initial temperature at t=2t=2, which is 7272 degrees Celsius:\newlineTemperature at t=10t=10 = 72+261.9831572 + 261.98315\newlineTemperature at t=10t=10 = 333.98315333.98315 degrees Celsius\newlineThis is still incorrect, as the temperature is unrealistically high. The error lies in the calculation of the change in temperature. The correct calculation should be:\newlineChange in temperature = 5.5×[(1/0.09)(0.4287)]-5.5 \times [(-1/0.09)(-0.4287)]00\newlineChange in temperature = 5.5×[(1/0.09)(0.4287)]-5.5 \times [(-1/0.09)(-0.4287)]\newlineChange in temperature = 5.5×[(1/0.09)(0.4287)]-5.5 \times [(-1/0.09)(-0.4287)]22\newlineChange in temperature = 5.5×[(1/0.09)(0.4287)]-5.5 \times [(-1/0.09)(-0.4287)]33\newlineNow, subtract the change in temperature from the initial temperature at t=2t=2, which is 7272 degrees Celsius:\newlineTemperature at t=10t=10 = 5.5×[(1/0.09)(0.4287)]-5.5 \times [(-1/0.09)(-0.4287)]77\newlineTemperature at t=10t=10 = 5.5×[(1/0.09)(0.4287)]-5.5 \times [(-1/0.09)(-0.4287)]99 degrees Celsius\newlineThis is the correct final temperature.