Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the equation 
4*10^(-3x)=18.
Solve the equation for 
x. Express the solution as a logarithm in base-10

x=

◻
Approximate the value of 
x. Round your answer to the nearest thousandth.

x~~◻

Consider the equation 4×103x=184\times 10^{-3x}=18.\newlineSolve the equation for xx. Express the solution as a logarithm in base10-10\newlinex=x= \square\newlineApproximate the value of xx. Round your answer to the nearest thousandth.\newlinexx\approx \square

Full solution

Q. Consider the equation 4×103x=184\times 10^{-3x}=18.\newlineSolve the equation for xx. Express the solution as a logarithm in base10-10\newlinex=x= \square\newlineApproximate the value of xx. Round your answer to the nearest thousandth.\newlinexx\approx \square
  1. Isolate exponential term: Step 11: Isolate the exponential term.\newline4×10(3x)=184\times10^{(-3x)} = 18\newlineDivide both sides by 44 to isolate the exponential term.\newline10(3x)=18410^{(-3x)} = \frac{18}{4}\newline10(3x)=4.510^{(-3x)} = 4.5
  2. Apply logarithm: Step 22: Apply the logarithm to both sides.\newlineTake the base10-10 logarithm of both sides to remove the exponent.\newlinelog10(103x)=log10(4.5)\log_{10}(10^{-3x}) = \log_{10}(4.5)\newline3x=log10(4.5)-3x = \log_{10}(4.5)
  3. Solve for x: Step 33: Solve for x.\newlineDivide both sides by 3-3 to solve for x.\newlinex=log10(4.5)3x = \frac{\log_{10}(4.5)}{-3}
  4. Approximate x value: Step 44: Approximate the value of xx. Using a calculator, find log10(4.5)\log_{10}(4.5). log10(4.5)0.653\log_{10}(4.5) \approx 0.653 x0.653/3x \approx 0.653 / -3 x0.218x \approx -0.218

More problems from Properties of logarithms: mixed review