Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the complex number

z=-(7sqrt2)/(2)-(7sqrt2)/(2)i". "
Which of the following complex numbers best approximates 
z^(3) ? Hint: 
z has a modulus of 7 and an argument of 
225^(@).
Choose 1 answer:
(A) 
-14.8-14.8 i
(B) 
242.5-242.5 i
(c) -21
(D) 
343 i

Consider the complex number\newlinez=722722i  z=-\frac{7 \sqrt{2}}{2}-\frac{7 \sqrt{2}}{2} i \text { } \newlineWhich of the following complex numbers best approximates z3 z^{3} ? Hint: z z has a modulus of 77 and an argument of 225 225^{\circ} .\newlineChoose 11 answer:\newline(A) 14.814.8i -14.8-14.8 i \newline(B) 242.5242.5i 242.5-242.5 i \newline(C) 21-21\newline(D) 343i 343 i

Full solution

Q. Consider the complex number\newlinez=722722i  z=-\frac{7 \sqrt{2}}{2}-\frac{7 \sqrt{2}}{2} i \text { } \newlineWhich of the following complex numbers best approximates z3 z^{3} ? Hint: z z has a modulus of 77 and an argument of 225 225^{\circ} .\newlineChoose 11 answer:\newline(A) 14.814.8i -14.8-14.8 i \newline(B) 242.5242.5i 242.5-242.5 i \newline(C) 21-21\newline(D) 343i 343 i
  1. Given complex number: We are given the complex number z=722722iz = -\frac{7\sqrt{2}}{2} - \frac{7\sqrt{2}}{2}i. To find z3z^3, we can use the polar form of the complex number, which is given by z=r(cos(θ)+isin(θ))z = r(\cos(\theta) + i \sin(\theta)), where rr is the modulus and θ\theta is the argument of zz.
  2. Modulus and argument: The modulus of zz is given as 77. We can verify this by calculating the modulus: z=(72/2)2+(72/2)2=2(72/4)=49/2=7|z| = \sqrt{(-7\sqrt{2}/2)^2 + (-7\sqrt{2}/2)^2} = \sqrt{2*(7^2/4)} = \sqrt{49/2} = 7.
  3. Polar form: The argument of zz is given as 225225 degrees. This corresponds to the point in the complex plane where the angle with the positive xx-axis (real axis) is 225225 degrees, which is in the third quadrant where both the real and imaginary parts are negative.
  4. De Moivre's theorem: Now we can write zz in polar form: z=7(cos(225°)+isin(225°))z = 7(\cos(225°) + i \sin(225°)). To find z3z^3, we will use De Moivre's theorem, which states that (r(cos(θ)+isin(θ)))n=rn(cos(nθ)+isin(nθ))(r(\cos(\theta) + i \sin(\theta)))^n = r^n(\cos(n\theta) + i \sin(n\theta)).
  5. Applying De Moivre's theorem: Applying De Moivre's theorem to find z3z^3, we get z3=73(cos(3225°)+isin(3225°))=343(cos(675°)+isin(675°))z^3 = 7^3(\cos(3\cdot225°) + i \sin(3\cdot225°)) = 343(\cos(675°) + i \sin(675°)).
  6. Simplifying angles: Since the sine and cosine functions are periodic with a period of 360°360°, we can simplify the angles by subtracting multiples of 360°360°. So, cos(675°)=cos(675°2×360°)=cos(45°)\cos(675°) = \cos(675° - 2\times360°) = \cos(-45°) and sin(675°)=sin(675°2×360°)=sin(45°)\sin(675°) = \sin(675° - 2\times360°) = \sin(-45°).
  7. Calculating z3z^3: The cosine and sine of 45-45 degrees are both 2/2-\sqrt{2}/2. Therefore, z3=343(2/2+i(2/2))z^3 = 343(-\sqrt{2}/2 + i(-\sqrt{2}/2)).
  8. Multiplying by 2/2-\sqrt{2}/2: Multiplying 343343 by 2/2-\sqrt{2}/2, we get z3=3432/2+i(3432/2)=343/2+i(343/2)z^3 = 343 \cdot -\sqrt{2}/2 + i(343 \cdot -\sqrt{2}/2) = -343/\sqrt{2} + i(-343/\sqrt{2}).
  9. Rationalizing the denominator: To simplify further, we can multiply and divide by 2\sqrt{2} to rationalize the denominator: z3=3432×22+i(3432×22)=34322+i(34322)z^3 = \frac{-343}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} + i\left(\frac{-343}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}\right) = \frac{-343\sqrt{2}}{2} + i\left(\frac{-343\sqrt{2}}{2}\right).
  10. Final numerical value: Now we calculate the numerical value: 3432/2242.5-343\sqrt{2}/2 \approx -242.5. So, z3242.5242.5iz^3 \approx -242.5 - 242.5i.

More problems from Fundamental Theorem of Algebra