Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Condense the logarithm

y log c+z log q
Answer: 
log(◻)

Condense the logarithm\newlineylogc+zlogq y \log c+z \log q \newlineAnswer: log() \log (\square)

Full solution

Q. Condense the logarithm\newlineylogc+zlogq y \log c+z \log q \newlineAnswer: log() \log (\square)
  1. Identify Properties: Identify the properties of logarithms that can be used to condense the expression ylogc+zlogqy \log c + z \log q. The power property of logarithms states that nlogb(x)=logb(xn)n \cdot \log_b(x) = \log_b(x^n). We can use this property to rewrite the given expression.
  2. Apply Power Property: Apply the power property to each term of the expression.\newlineylogcy \log c can be rewritten as logcy\log c^y and zlogqz \log q can be rewritten as logqz\log q^z.\newlineSo, ylogc+zlogqy \log c + z \log q becomes logcy+logqz\log c^y + \log q^z.
  3. Combine Terms: Use the product property of logarithms to combine the two logarithms into one.\newlineThe product property states that logb(x)+logb(y)=logb(xy)\log_b(x) + \log_b(y) = \log_b(xy). We can apply this property to the expression logcy+logqz\log c^y + \log q^z.\newlineSo, logcy+logqz\log c^y + \log q^z becomes log(cyqz)\log (c^y \cdot q^z).
  4. Write Final Expression: Write the final condensed logarithm expression.\newlineThe final expression is log(cyqz)\log (c^y \cdot q^z).

More problems from Evaluate logarithms using properties