Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Condense the logarithm

x log b+7log k
Answer: 
log(◻)

Condense the logarithm\newlinexlogb+7logk x \log b+7 \log k \newlineAnswer: log() \log (\square)

Full solution

Q. Condense the logarithm\newlinexlogb+7logk x \log b+7 \log k \newlineAnswer: log() \log (\square)
  1. Identify Properties: Identify the properties of logarithms that can be used to condense the expression.\newlineThe expression xlogb+7logkx \log b + 7 \log k can be condensed using the power property of logarithms, which states that nlogb(a)=logb(an)n \cdot \log_b(a) = \log_b(a^n).
  2. Apply Power Property: Apply the power property to each term in the expression.\newlineFor the first term, xlogbx \log b, we can write it as log(bx)\log(b^x).\newlineFor the second term, 7logk7 \log k, we can write it as log(k7)\log(k^7).
  3. Combine Using Product Property: Combine the two logarithms into a single logarithm using the product property.\newlineThe product property of logarithms states that logb(u)+logb(v)=logb(uv)\log_b(u) + \log_b(v) = \log_b(uv).\newlineTherefore, we can combine the two terms to get log(bxk7)\log(b^x \cdot k^7).

More problems from Product property of logarithms