Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Condense the logarithm

log d-7log k
Answer: 
log(◻)

Condense the logarithm\newlinelogd7logk \log d-7 \log k \newlineAnswer: log() \log (\square)

Full solution

Q. Condense the logarithm\newlinelogd7logk \log d-7 \log k \newlineAnswer: log() \log (\square)
  1. Rewrite second term: We are given the expression log(d)7log(k)\log(d) - 7\log(k) and we need to condense it into a single logarithm.\newlineAccording to the logarithm power rule, logb(an)=nlogb(a)\log_b(a^n) = n\log_b(a), we can rewrite the second term as a logarithm of a power.\newlinelog(d)7log(k)=log(d)log(k7)\log(d) - 7\log(k) = \log(d) - \log(k^7)
  2. Combine logarithms: Now, we can use the logarithm subtraction rule, which states that logb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b(\frac{a}{c}), to combine the two logarithms into one.\newlinelog(d)log(k7)=log(dk7)\log(d) - \log(k^7) = \log(\frac{d}{k^7})

More problems from Convert between exponential and logarithmic form