Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Condense the logarithm

log c+x log d
Answer: 
log(◻)

Condense the logarithm\newlinelogc+xlogd \log c+x \log d \newlineAnswer: log() \log (\square)

Full solution

Q. Condense the logarithm\newlinelogc+xlogd \log c+x \log d \newlineAnswer: log() \log (\square)
  1. Identify Property: Identify the property used to condense the logarithmic expression.\newlineThe property used to condense the sum of logarithms is the product property of logarithms.\newlineProduct property: logb(m)+logb(n)=logb(mn)\log_b(m) + \log_b(n) = \log_b(m \cdot n)
  2. Apply Product Property: Apply the product property to the term xlog(d)x \log(d). Since xx is a coefficient of log(d)\log(d), we can use the power property of logarithms in reverse to rewrite xlog(d)x \log(d) as log(dx)\log(d^x). Power property: nlogb(m)=logb(mn)n \cdot \log_b(m) = \log_b(m^n)
  3. Combine Terms: Combine log(c)\log(c) and log(dx)\log(d^x) using the product property.\newlineUsing the product property from Step 11, we combine log(c)\log(c) and log(dx)\log(d^x) into a single logarithm.\newlinelog(c)+log(dx)=log(cdx)\log(c) + \log(d^x) = \log(c \cdot d^x)
  4. Write Final Answer: Write the final answer.\newlineThe expression log(c)+xlog(d)\log(c) + x \log(d) has been condensed into log(cdx)\log(c \cdot d^x).

More problems from Power property of logarithms