Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Condense the logarithm

5log d+log x
Answer: 
log(◻)

Condense the logarithm\newline5logd+logx 5 \log d+\log x \newlineAnswer: log() \log (\square)

Full solution

Q. Condense the logarithm\newline5logd+logx 5 \log d+\log x \newlineAnswer: log() \log (\square)
  1. Apply Power Rule: Apply the power rule of logarithms to the term 5logd5\log d. The power rule states that alogb(c)=logb(ca)a\log_b(c) = \log_b(c^a). Therefore, we can rewrite 5logd5\log d as log(d5)\log(d^5). Calculation: 5logd=log(d5)5\log d = \log(d^5)
  2. Combine Logarithmic Terms: Combine the two logarithmic terms using the product rule.\newlineThe product rule of logarithms states that logb(m)+logb(n)=logb(mn)\log_b(m) + \log_b(n) = \log_b(m*n). Therefore, we can combine log(d5)\log(d^5) and logx\log x into a single logarithm.\newlineCalculation: log(d5)+logx=log(d5x)\log(d^5) + \log x = \log(d^5 * x)
  3. Write Final Answer: Write the final answer.\newlineThe expression 5logd+logx5\log d + \log x has been condensed into log(d5×x)\log(d^5 \times x).

More problems from Convert between exponential and logarithmic form