Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Condense the logarithm

5log b+3log r
Answer: 
log(◻)

Condense the logarithm\newline5logb+3logr 5 \log b+3 \log r \newlineAnswer: log() \log (\square)

Full solution

Q. Condense the logarithm\newline5logb+3logr 5 \log b+3 \log r \newlineAnswer: log() \log (\square)
  1. Identify Property: Identify the property used to condense the logarithm.\newlineWhen you have a coefficient in front of a logarithm, you can use the power property to move the coefficient inside the logarithm as an exponent of the argument.\newlinePower Property: nlogb(P)=logb(Pn)n \cdot \log_b (P) = \log_b (P^n)
  2. Apply Power Property: Apply the power property to each term.\newlineFor the first term, 5logb5\log b, we apply the power property to get log(b5)\log(b^5).\newlineFor the second term, 3logr3\log r, we apply the power property to get log(r3)\log(r^3).
  3. Combine Using Product Property: Combine the two logarithms into one using the product property.\newlineProduct Property: logbP+logbQ=logb(P×Q)\log_b P + \log_b Q = \log_b (P \times Q)\newlineCombine log(b5)\log(b^5) and log(r3)\log(r^3) using the product property to get log(b5×r3)\log(b^5 \times r^3).

More problems from Quotient property of logarithms