Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Condense each expression to a single logarithm.


2log_(6)u-8log_(6)v

Condense each expression to a single logarithm.\newline2log6u8log6v 2 \log _{6} u-8 \log _{6} v

Full solution

Q. Condense each expression to a single logarithm.\newline2log6u8log6v 2 \log _{6} u-8 \log _{6} v
  1. Identify Properties: Identify the properties of logarithms that can be used to condense the expression.\newlineThe expression involves coefficients in front of the logarithms, which suggests the use of the power property of logarithms to move the coefficients inside the logarithms as exponents.\newlinePower Property: alogb(P)=logb(Pa)a\log_b(P) = \log_b(P^a)
  2. Apply Power Property: Apply the power property to move the coefficients inside the logarithms as exponents.\newlineUsing the power property, we can rewrite the expression as follows:\newline2log6u=log6(u2)2\log_{6}u = \log_{6}(u^2)\newline8log6v=log6(v8)8\log_{6}v = \log_{6}(v^8)
  3. Combine Using Quotient Property: Combine the two logarithms into a single logarithm using the quotient property.\newlineQuotient Property: logb(P)logb(Q)=logb(PQ)\log_b(P) - \log_b(Q) = \log_b\left(\frac{P}{Q}\right)\newlineSo, log6(u2)log6(v8)=log6(u2v8)\log_{6}(u^2) - \log_{6}(v^8) = \log_{6}\left(\frac{u^2}{v^8}\right)
  4. Write Final Answer: Write the final answer as a single logarithm.\newlineThe expression is now condensed to a single logarithm:\newlinelog6(u2v8)\log_{6}\left(\frac{u^2}{v^8}\right)

More problems from Product property of logarithms