Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Compute the derivatives\newlinef(x)=ln(2xx+1)3f(x)=\ln \left(\frac{2x}{x+1}\right)^3

Full solution

Q. Compute the derivatives\newlinef(x)=ln(2xx+1)3f(x)=\ln \left(\frac{2x}{x+1}\right)^3
  1. Apply Chain Rule for ln(u)\ln(u): Apply the chain rule to the logarithmic function.\newlineThe derivative of ln(u)\ln(u) is 1ududx\frac{1}{u} \cdot \frac{du}{dx}, where uu is a function of xx. In this case, u=(2xx+1)3u = \left(\frac{2x}{x+1}\right)^3.
  2. Differentiate Inside Function uu: Differentiate the inside function u=(2xx+1)3u = \left(\frac{2x}{x+1}\right)^3. To differentiate uu, we will use the chain rule again, since uu is a composition of two functions: the cube function and the division of 2x2x by x+1x+1.
  3. Differentiate Cube Function: Differentiate the cube function.\newlineThe derivative of v3v^3 with respect to vv is 3v23v^2. Let v=2xx+1v = \frac{2x}{x+1}, then the derivative of v3v^3 with respect to xx is 3v2dvdx3v^2 \cdot \frac{dv}{dx}.
  4. Differentiate v=2xx+1v = \frac{2x}{x+1}: Differentiate v=2xx+1v = \frac{2x}{x+1}. To differentiate vv, we will use the quotient rule: vuvuu2\frac{v'}{u} - \frac{vu'}{u^2}, where v=2xv = 2x and u=x+1u = x+1. The derivative of 2x2x is 22, and the derivative of x+1x+1 is 11.
  5. Apply Quotient Rule for dv/dx: Apply the quotient rule to find dv/dxdv/dx. \newlinedv/dx=2(x+1)2x1(x+1)2=2x+22x(x+1)2=2(x+1)2.dv/dx = \frac{2*(x+1) - 2x*1}{(x+1)^2} = \frac{2x + 2 - 2x}{(x+1)^2} = \frac{2}{(x+1)^2}.
  6. Combine Results from Step 33 and Step 55: Combine the results from Step 33 and Step 55.\newlineThe derivative of uu with respect to xx is 3v2dvdx=3(2xx+1)22(x+1)23v^2 \cdot \frac{dv}{dx} = 3\left(\frac{2x}{x+1}\right)^2 \cdot \frac{2}{(x+1)^2}.
  7. Simplify Expression for dudx\frac{du}{dx}: Simplify the expression for dudx\frac{du}{dx}.3(2xx+1)2×2(x+1)2=3(4x2(x+1)2)×2(x+1)2=24x2(x+1)4.3\left(\frac{2x}{x+1}\right)^2 \times \frac{2}{(x+1)^2} = 3\left(\frac{4x^2}{(x+1)^2}\right) \times \frac{2}{(x+1)^2} = \frac{24x^2}{(x+1)^4}.
  8. Apply Chain Rule for f(x)f(x): Apply the chain rule to find the derivative of f(x)f(x). The derivative of f(x)f(x) with respect to xx is 1ududx=1(2xx+1)324x2(x+1)4\frac{1}{u} \cdot \frac{du}{dx} = \frac{1}{\left(\frac{2x}{x+1}\right)^3} \cdot \frac{24x^2}{(x+1)^4}.
  9. Simplify Expression for f(x)f'(x): Simplify the expression for f(x)f'(x).1(2xx+1)3×24x2(x+1)4=24x2(2x)3×1x+1=24x28x3×1x+1\frac{1}{\left(\frac{2x}{x+1}\right)^3} \times \frac{24x^2}{(x+1)^4} = \frac{24x^2}{(2x)^3} \times \frac{1}{x+1} = \frac{24x^2}{8x^3} \times \frac{1}{x+1}.
  10. Further Simplify f(x)f'(x): Further simplify the expression for f(x)f'(x).24x28x31x+1=3x1x+1=3x(x+1)\frac{24x^2}{8x^3} \cdot \frac{1}{x+1} = \frac{3}{x} \cdot \frac{1}{x+1} = \frac{3}{x(x+1)}.

More problems from Quadratic equation with complex roots