Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Complete the point-slope equation of the line through 
(-4,8) and (4,4).
Use exact numbers.
y-4=◻

Complete the point-slope equation of the line through (4,8)(-4,8) and (4,4)(4,4). \newlineUse exact numbers.\newliney4=y-4= \square

Full solution

Q. Complete the point-slope equation of the line through (4,8)(-4,8) and (4,4)(4,4). \newlineUse exact numbers.\newliney4=y-4= \square
  1. Find the slope: First, find the slope mm of the line using the slope formula m=y2y1x2x1m = \frac{y_2 - y_1}{x_2 - x_1} where (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) are the given points.\newlineSo, m=484(4)m = \frac{4 - 8}{4 - (-4)}
  2. Calculate the slope: Now, calculate the slope: m=48=12m = \frac{-4}{8} = -\frac{1}{2}.
  3. Use point-slope form: Next, use the point-slope form yy1=m(xx1)y - y_1 = m(x - x_1). We can use either point, but let's use (4,4)(4,4). So, y4=(12)(x4)y - 4 = \left(-\frac{1}{2}\right)(x - 4).

More problems from Find equations of tangent lines using limits