Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Carter measures a line to be 
5.17ft long. If the actual measurement is 
5ft, find Carter's relative error to the nearest thousandth.
Answer:

Carter measures a line to be 5.17ft 5.17 \mathrm{ft} long. If the actual measurement is 5ft 5 \mathrm{ft} , find Carter's relative error to the nearest thousandth.\newlineAnswer:

Full solution

Q. Carter measures a line to be 5.17ft 5.17 \mathrm{ft} long. If the actual measurement is 5ft 5 \mathrm{ft} , find Carter's relative error to the nearest thousandth.\newlineAnswer:
  1. Understand relative error: Understand the concept of relative error. Relative error is the absolute error divided by the actual measurement, often expressed as a percentage or in this case, to the nearest thousandth. The absolute error is the difference between the measured value and the actual value.
  2. Calculate absolute error: Calculate the absolute error.\newlineAbsolute error = Measured ValueActual Value|\text{Measured Value} - \text{Actual Value}|\newlineAbsolute error = 5.17ft5ft|5.17\text{ft} - 5\text{ft}|\newlineAbsolute error = 0.17ft|0.17\text{ft}|
  3. Calculate relative error: Calculate the relative error.\newlineRelative error = Absolute errorActual Value\frac{\text{Absolute error}}{\text{Actual Value}}\newlineRelative error = 0.17ft5ft\frac{0.17\,\text{ft}}{5\,\text{ft}}\newlineRelative error = 0.0340.034
  4. Round relative error: Round the relative error to the nearest thousandth.\newlineRelative error rounded to the nearest thousandth = 0.0340.034 (It is already at the thousandth place, so no further rounding is needed.)

More problems from Percent error