Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the amount of material used in the construction of an igloo if its outer radius is 1515 feet and the thickness is 66 inches.

Full solution

Q. Calculate the amount of material used in the construction of an igloo if its outer radius is 1515 feet and the thickness is 66 inches.
  1. Calculate Outer Volume: First, we need to determine the volume of the igloo with the outer radius before subtracting the volume of the igloo with the inner radius (which is the outer radius minus the thickness of the walls). The formula for the volume of a sphere (or in this case, a hemisphere since an igloo is half a sphere) is V=43πr3V = \frac{4}{3}\pi r^3. However, since we only need the volume of a hemisphere, we will use V=23πr3V = \frac{2}{3}\pi r^3.
  2. Calculate Inner Volume: Calculate the volume of the igloo with the outer radius 1515 feet. Convert the radius to inches to match the thickness unit 66 inches. There are 1212 inches in a foot, so the outer radius in inches is 1515 feet 12* 12 inches/foot =180= 180 inches. Now, calculate the volume using the formula V=23πr3V = \frac{2}{3}\pi r^3.\newlineVouter=23π(180V_{\text{outer}} = \frac{2}{3}\pi(180 inches)3)^3
  3. Subtract Volumes: Perform the calculation for the outer volume:\newlineVouter=23π(1803)V_{\text{outer}} = \frac{2}{3}\pi(180^3) inches3^3\newlineVouter=23π(5,832,000)V_{\text{outer}} = \frac{2}{3}\pi(5,832,000) inches3^3\newlineVouter=23π(5,832,000)V_{\text{outer}} = \frac{2}{3}\pi(5,832,000) inches3^3\newlineVouter23×3.14159×5,832,000V_{\text{outer}} \approx \frac{2}{3} \times 3.14159 \times 5,832,000 inches3^3\newlineVouter12,207,168πV_{\text{outer}} \approx 12,207,168\pi inches3^3
  4. Convert to Cubic Feet: Next, calculate the volume of the igloo with the inner radius. The thickness of the walls is 66 inches, so the inner radius is 180180 inches - 66 inches =174= 174 inches. Now, calculate the volume using the formula V=23πr3V = \frac{2}{3}\pi r^3. \newlineVinner=23π(174 inches)3V_{\text{inner}} = \frac{2}{3}\pi(174 \text{ inches})^3
  5. Convert to Cubic Feet: Next, calculate the volume of the igloo with the inner radius. The thickness of the walls is 66 inches, so the inner radius is 180180 inches - 66 inches = 174174 inches. Now, calculate the volume using the formula V=23πr3V = \frac{2}{3}\pi r^3.\newlineVinner=23π(174 inches)3V_{\text{inner}} = \frac{2}{3}\pi(174 \text{ inches})^3Perform the calculation for the inner volume:\newlineVinner=23π(1743) inches3V_{\text{inner}} = \frac{2}{3}\pi(174^3) \text{ inches}^3\newlineVinner=23π(5,278,584) inches3V_{\text{inner}} = \frac{2}{3}\pi(5,278,584) \text{ inches}^3\newlineVinner23×3.14159×5,278,584 inches3V_{\text{inner}} \approx \frac{2}{3} \times 3.14159 \times 5,278,584 \text{ inches}^3\newlineVinner11,048,314.32π inches3V_{\text{inner}} \approx 11,048,314.32\pi \text{ inches}^3
  6. Convert to Cubic Feet: Next, calculate the volume of the igloo with the inner radius. The thickness of the walls is 66 inches, so the inner radius is 180180 inches 6- 6 inches =174= 174 inches. Now, calculate the volume using the formula V=23πr3V = \frac{2}{3}\pi r^3.
    Vinner=23π(174 inches)3V_{\text{inner}} = \frac{2}{3}\pi(174 \text{ inches})^3 Perform the calculation for the inner volume:
    Vinner=23π(1743) inches3V_{\text{inner}} = \frac{2}{3}\pi(174^3) \text{ inches}^3
    Vinner=23π(5,278,584) inches3V_{\text{inner}} = \frac{2}{3}\pi(5,278,584) \text{ inches}^3
    Vinner23×3.14159×5,278,584 inches3V_{\text{inner}} \approx \frac{2}{3} \times 3.14159 \times 5,278,584 \text{ inches}^3
    Vinner11,048,314.32π inches3V_{\text{inner}} \approx 11,048,314.32\pi \text{ inches}^3Now, subtract the inner volume from the outer volume to find the volume of the material used in the construction of the igloo.
    18018000
    18018011
  7. Convert to Cubic Feet: Next, calculate the volume of the igloo with the inner radius. The thickness of the walls is 66 inches, so the inner radius is 180180 inches 6- 6 inches =174= 174 inches. Now, calculate the volume using the formula V=23πr3V = \frac{2}{3}\pi r^3.\newlineVinner=23π(174 inches)3V_{\text{inner}} = \frac{2}{3}\pi(174 \text{ inches})^3 Perform the calculation for the inner volume:\newlineVinner=23π(1743) inches3V_{\text{inner}} = \frac{2}{3}\pi(174^3) \text{ inches}^3\newlineVinner=23π(5,278,584) inches3V_{\text{inner}} = \frac{2}{3}\pi(5,278,584) \text{ inches}^3\newlineVinner23×3.14159×5,278,584 inches3V_{\text{inner}} \approx \frac{2}{3} \times 3.14159 \times 5,278,584 \text{ inches}^3\newlineVinner11,048,314.32π inches3V_{\text{inner}} \approx 11,048,314.32\pi \text{ inches}^3 Now, subtract the inner volume from the outer volume to find the volume of the material used in the construction of the igloo.\newline18018000\newline18018011 Perform the subtraction to find the material volume:\newline18018011\newline18018033
  8. Convert to Cubic Feet: Next, calculate the volume of the igloo with the inner radius. The thickness of the walls is 66 inches, so the inner radius is 180180 inches 6- 6 inches =174= 174 inches. Now, calculate the volume using the formula V=23πr3V = \frac{2}{3}\pi r^3. \newlineVinner=23π(174 inches)3V_{\text{inner}} = \frac{2}{3}\pi(174 \text{ inches})^3 Perform the calculation for the inner volume: \newlineVinner=23π(1743) inches3V_{\text{inner}} = \frac{2}{3}\pi(174^3) \text{ inches}^3\newlineVinner=23π(5,278,584) inches3V_{\text{inner}} = \frac{2}{3}\pi(5,278,584) \text{ inches}^3\newlineVinner23×3.14159×5,278,584 inches3V_{\text{inner}} \approx \frac{2}{3} \times 3.14159 \times 5,278,584 \text{ inches}^3\newlineVinner11,048,314.32π inches3V_{\text{inner}} \approx 11,048,314.32\pi \text{ inches}^3 Now, subtract the inner volume from the outer volume to find the volume of the material used in the construction of the igloo.\newline18018000\newline18018011 Perform the subtraction to find the material volume:\newline18018011\newline18018033 To make the final answer more understandable, convert the material volume from cubic inches to cubic feet. There are 18018044 inches in a foot, so there are 18018055 cubic inches in a cubic foot.\newline18018066\newline18018077
  9. Convert to Cubic Feet: Next, calculate the volume of the igloo with the inner radius. The thickness of the walls is 66 inches, so the inner radius is 180180 inches 6- 6 inches =174= 174 inches. Now, calculate the volume using the formula V=23πr3V = \frac{2}{3}\pi r^3. \newlineVinner=23π(174 inches)3V_{\text{inner}} = \frac{2}{3}\pi(174 \text{ inches})^3 Perform the calculation for the inner volume: \newlineVinner=23π(1743) inches3V_{\text{inner}} = \frac{2}{3}\pi(174^3) \text{ inches}^3 \newlineVinner=23π(5,278,584) inches3V_{\text{inner}} = \frac{2}{3}\pi(5,278,584) \text{ inches}^3 \newlineVinner23×3.14159×5,278,584 inches3V_{\text{inner}} \approx \frac{2}{3} \times 3.14159 \times 5,278,584 \text{ inches}^3 \newlineVinner11,048,314.32π inches3V_{\text{inner}} \approx 11,048,314.32\pi \text{ inches}^3 Now, subtract the inner volume from the outer volume to find the volume of the material used in the construction of the igloo. \newlineMaterial volume 18018000 \newlineMaterial volume 18018011 Perform the subtraction to find the material volume: \newlineMaterial volume 18018011 \newlineMaterial volume 18018033 To make the final answer more understandable, convert the material volume from cubic inches to cubic feet. There are 18018044 inches in a foot, so there are 18018055 cubic inches in a cubic foot. \newlineMaterial volume in cubic feet 18018066 \newlineMaterial volume in cubic feet 18018077 Perform the final calculation to convert the material volume to cubic feet: \newlineMaterial volume in cubic feet 18018077 \newlineMaterial volume in cubic feet 18018099 \newlineMaterial volume in cubic feet 6- 600 \newlineMaterial volume in cubic feet 6- 611

More problems from Solve proportions: word problems