Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Baylee tried to solve the differential equation 
(dy)/(dx)=(e^(x))/(y^(2)). This is her work:

(dy)/(dx)=(e^(x))/(y^(2))
Step 1: 
quad inty^(2)dy=inte^(x)dx
Step 2: 
quad(y^(3))/(3)=e^(x)
Step 3: 
quady^(3)=3e^(x)
Step 4: 
quad y=root(3)(3e^(x))+C
Is Baylee's work correct? If not, what is her mistake?
Choose 1 answer:
(A) Baylee's work is correct.
(B) Step 1 is incorrect. The separation of variables wasn't done correctly.
(C) Step 2 is incorrect. The right-hand side of the equation should be 
e^(x)+C.
(D) Step 4 is incorrect. The right-hand side of the equation should be 
root(3)(3e^(x))+root(3)(C).

Baylee tried to solve the differential equation dydx=exy2 \frac{d y}{d x}=\frac{e^{x}}{y^{2}} . This is her work:\newlinedydx=exy2 \frac{d y}{d x}=\frac{e^{x}}{y^{2}} \newlineStep 11: y2dy=exdx \quad \int y^{2} d y=\int e^{x} d x \newlineStep 22: y33=ex \quad \frac{y^{3}}{3}=e^{x} \newlineStep 33: y3=3ex \quad y^{3}=3 e^{x} \newlineStep 44: y=3ex3+C \quad y=\sqrt[3]{3 e^{x}}+C \newlineIs Baylee's work correct? If not, what is her mistake?\newlineChoose 11 answer:\newline(A) Baylee's work is correct.\newline(B) Step 11 is incorrect. The separation of variables wasn't done correctly.\newline(C) Step 22 is incorrect. The right-hand side of the equation should be ex+C e^{x}+C .\newline(D) Step 44 is incorrect. The right-hand side of the equation should be 3ex3+C3 \sqrt[3]{3 e^{x}}+\sqrt[3]{C} .

Full solution

Q. Baylee tried to solve the differential equation dydx=exy2 \frac{d y}{d x}=\frac{e^{x}}{y^{2}} . This is her work:\newlinedydx=exy2 \frac{d y}{d x}=\frac{e^{x}}{y^{2}} \newlineStep 11: y2dy=exdx \quad \int y^{2} d y=\int e^{x} d x \newlineStep 22: y33=ex \quad \frac{y^{3}}{3}=e^{x} \newlineStep 33: y3=3ex \quad y^{3}=3 e^{x} \newlineStep 44: y=3ex3+C \quad y=\sqrt[3]{3 e^{x}}+C \newlineIs Baylee's work correct? If not, what is her mistake?\newlineChoose 11 answer:\newline(A) Baylee's work is correct.\newline(B) Step 11 is incorrect. The separation of variables wasn't done correctly.\newline(C) Step 22 is incorrect. The right-hand side of the equation should be ex+C e^{x}+C .\newline(D) Step 44 is incorrect. The right-hand side of the equation should be 3ex3+C3 \sqrt[3]{3 e^{x}}+\sqrt[3]{C} .
  1. Check First Step: Baylee is trying to solve the differential equation by separating variables. Let's check her first step:\newlinedydx=exy2\frac{dy}{dx} = \frac{e^{x}}{y^{2}}\newlineTo separate variables, we multiply both sides by y2y^2 and dxdx:\newliney2dy=exdxy^2 dy = e^x dx\newlineThis is the correct separation of variables.
  2. Separate Variables: Now, Baylee integrates both sides of the equation:\newliney2dy=exdx\int y^2 \, dy = \int e^x \, dx\newlineThe integral of y2y^2 with respect to yy is (y3)/3(y^3)/3, and the integral of exe^x with respect to xx is exe^x plus a constant of integration.\newline(y3)/3=ex+C(y^3)/3 = e^x + C\newlineBaylee forgot to include the constant of integration on the right-hand side.

More problems from Compare linear and exponential growth