Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 1ooth if necessary.

{:[" 1-Var-Stats "],[ bar(x)=238.428571429],[Sigma x=1669],[Sigmax^(2)=399997],[Sx=18.5279711325],[sigma x=17.1535680824],[n=7],[minX=216],[Q_(1)=224],[Med^(2)=234],[Q_(3)=254],[maxX=271]:}
Answer:

Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 11ooth if necessary.\newline 1-Var-Stats xˉ=238.428571429Σx=1669Σx2=399997Sx=18.5279711325σx=17.1535680824n=7minX=216Q1=224Med2=234Q3=254maxX=271 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=238.428571429 \\ \Sigma x=1669 \\ \Sigma x^{2}=399997 \\ S x=18.5279711325 \\ \sigma x=17.1535680824 \\ n=7 \\ \min \mathrm{X}=216 \\ \mathrm{Q}_{1}=224 \\ \mathrm{Med}^{2}=234 \\ \mathrm{Q}_{3}=254 \\ \max \mathrm{X}=271 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 11ooth if necessary.\newline 1-Var-Stats xˉ=238.428571429Σx=1669Σx2=399997Sx=18.5279711325σx=17.1535680824n=7minX=216Q1=224Med2=234Q3=254maxX=271 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=238.428571429 \\ \Sigma x=1669 \\ \Sigma x^{2}=399997 \\ S x=18.5279711325 \\ \sigma x=17.1535680824 \\ n=7 \\ \min \mathrm{X}=216 \\ \mathrm{Q}_{1}=224 \\ \mathrm{Med}^{2}=234 \\ \mathrm{Q}_{3}=254 \\ \max \mathrm{X}=271 \end{array} \newlineAnswer:
  1. Identify Symbol: Identify the symbol for population standard deviation in the calculator output.\newlineThe symbol for population standard deviation in most statistical calculators is "sigma x" or "σx\sigma_x". In the given output, we see "[σx=17.1535680824][\sigma x=17.1535680824]". This indicates the population standard deviation.
  2. Check Value: Check the value given for population standard deviation.\newlineThe value provided for the population standard deviation is 17.153568082417.1535680824. Since we are asked to round to the nearest hundredth, we will round this number accordingly.
  3. Round to Nearest Hundredth: Round the population standard deviation to the nearest hundredth.\newlineRounding 17.153568082417.1535680824 to the nearest hundredth gives us 17.1517.15.