Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 1ooth if necessary.

{:[" 1-Var-Stats "],[ bar(x)=170.571428571],[Sigma x=1194],[Sigmax^(2)=210480],[Sx=33.7088373322],[sigma x=31.2083191421],[n=7],[minX=118],[Q_(1)=138],[Med^(2)=183],[Q_(3)=202],[maxX=207]:}
Answer:

Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 11ooth if necessary.\newline 1-Var-Stats xˉ=170.571428571Σx=1194Σx2=210480Sx=33.7088373322σx=31.2083191421n=7minX=118Q1=138Med2=183Q3=202maxX=207 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=170.571428571 \\ \Sigma x=1194 \\ \Sigma x^{2}=210480 \\ S x=33.7088373322 \\ \sigma x=31.2083191421 \\ n=7 \\ \operatorname{minX}=118 \\ \mathrm{Q}_{1}=138 \\ \mathrm{Med}^{2}=183 \\ \mathrm{Q}_{3}=202 \\ \max \mathrm{X}=207 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 11ooth if necessary.\newline 1-Var-Stats xˉ=170.571428571Σx=1194Σx2=210480Sx=33.7088373322σx=31.2083191421n=7minX=118Q1=138Med2=183Q3=202maxX=207 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=170.571428571 \\ \Sigma x=1194 \\ \Sigma x^{2}=210480 \\ S x=33.7088373322 \\ \sigma x=31.2083191421 \\ n=7 \\ \operatorname{minX}=118 \\ \mathrm{Q}_{1}=138 \\ \mathrm{Med}^{2}=183 \\ \mathrm{Q}_{3}=202 \\ \max \mathrm{X}=207 \end{array} \newlineAnswer:
  1. Calculate Standard Deviation: The calculator output provides the value of the population standard deviation directly as "σx=31.2083191421\sigma x=31.2083191421". Since we are asked to round to the nearest hundredth, we will round this value to two decimal places.
  2. Round to Nearest Hundredth: To round to the nearest hundredth, we look at the third decimal place. If it is 55 or greater, we round up the second decimal place by one. If it is less than 55, we leave the second decimal place as it is. The third decimal place in 31.208319142131.2083191421 is 88, which is greater than 55, so we round up the second decimal place from 00 to 11.
  3. Final Standard Deviation: After rounding, the population standard deviation is 31.2131.21.

More problems from One-step inequalities: word problems