Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 1ooth if necessary.

{:[" 1-Var-Stats "],[ bar(x)=41.4285714286],[Sigma x=290],[Sigmax^(2)=12714],[Sx=10.7990299388],[sigma x=9.99795897538],[n=7],[minX=27],[Q_(1)=31],[Med^(2)=41],[Q_(3)=53],[maxX=57]:}
Answer:

Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 11ooth if necessary.\newline 1-Var-Stats xˉ=41.4285714286Σx=290Σx2=12714Sx=10.7990299388σx=9.99795897538n=7minX=27Q1=31Med2=41Q3=53maxX=57 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=41.4285714286 \\ \Sigma x=290 \\ \Sigma x^{2}=12714 \\ S x=10.7990299388 \\ \sigma x=9.99795897538 \\ n=7 \\ \operatorname{minX}=27 \\ \mathrm{Q}_{1}=31 \\ \mathrm{Med}^{2}=41 \\ \mathrm{Q}_{3}=53 \\ \max \mathrm{X}=57 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 11ooth if necessary.\newline 1-Var-Stats xˉ=41.4285714286Σx=290Σx2=12714Sx=10.7990299388σx=9.99795897538n=7minX=27Q1=31Med2=41Q3=53maxX=57 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=41.4285714286 \\ \Sigma x=290 \\ \Sigma x^{2}=12714 \\ S x=10.7990299388 \\ \sigma x=9.99795897538 \\ n=7 \\ \operatorname{minX}=27 \\ \mathrm{Q}_{1}=31 \\ \mathrm{Med}^{2}=41 \\ \mathrm{Q}_{3}=53 \\ \max \mathrm{X}=57 \end{array} \newlineAnswer:
  1. Identify Symbol: Identify the symbol for population standard deviation in the calculator output.\newlineThe symbol for population standard deviation is σx\sigma_x in the given output.
  2. Locate Value: Locate the value of the population standard deviation in the output.\newlineThe value given for "sigma x" is 9.997958975389.99795897538.
  3. Round Standard Deviation: Round the population standard deviation to the nearest hundredth.\newlineRounding 9.997958975389.99795897538 to the nearest hundredth gives us 10.0010.00.