Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 1ooth if necessary.

{:[" 1-Var-Stats "],[ bar(x)=106.142857143],[Sigma x=743],[Sigmax^(2)=80877],[Sx=18.3160091307],[sigma x=16.9573294008],[n=7],[minX=77],[Q_(1)=91],[Med^(2)=107],[Q_(3)=120],[maxX=131]:}
Answer:

Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 11ooth if necessary.\newline 1-Var-Stats xˉ=106.142857143Σx=743Σx2=80877Sx=18.3160091307σx=16.9573294008n=7minX=77Q1=91Med2=107Q3=120maxX=131 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=106.142857143 \\ \Sigma x=743 \\ \Sigma x^{2}=80877 \\ S x=18.3160091307 \\ \sigma x=16.9573294008 \\ n=7 \\ \operatorname{minX}=77 \\ \mathrm{Q}_{1}=91 \\ \mathrm{Med}^{2}=107 \\ \mathrm{Q}_{3}=120 \\ \max \mathrm{X}=131 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the population standard deviation of the dataset, rounding to the nearest 11ooth if necessary.\newline 1-Var-Stats xˉ=106.142857143Σx=743Σx2=80877Sx=18.3160091307σx=16.9573294008n=7minX=77Q1=91Med2=107Q3=120maxX=131 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=106.142857143 \\ \Sigma x=743 \\ \Sigma x^{2}=80877 \\ S x=18.3160091307 \\ \sigma x=16.9573294008 \\ n=7 \\ \operatorname{minX}=77 \\ \mathrm{Q}_{1}=91 \\ \mathrm{Med}^{2}=107 \\ \mathrm{Q}_{3}=120 \\ \max \mathrm{X}=131 \end{array} \newlineAnswer:
  1. Identify symbol for population standard deviation: Identify the symbol for population standard deviation in the calculator output.\newlineThe symbol for population standard deviation is σx\sigma_x in the calculator output.
  2. Locate value of standard deviation: Locate the value of the population standard deviation in the calculator output.\newlineThe value given for "sigma x" is 16.957329400816.9573294008.
  3. Round standard deviation: Round the population standard deviation to the nearest hundredth. Rounding 16.957329400816.9573294008 to the nearest hundredth gives us 16.9616.96.
  4. Verify rounding accuracy: Verify that the rounding is done correctly. 16.957329400816.9573294008 rounded to two decimal places is indeed 16.9616.96.

More problems from Find the limit at a vertical asymptote of a rational function II