Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the mean of the dataset, rounding to the nearest 10oth if necessary.

{:[" 1-Var-Stats "],[ bar(x)=137.142857143],[Sigma x=960],[Sigmax^(2)=132126],[Sx=8.83984485966],[sigma x=8.18410604994],[n=7],[minX=128],[Q_(1)=129],[Med^(2)=137],[Q_(3)=149],[maxX=149]:}
Answer:

Based on the following calculator output, determine the mean of the dataset, rounding to the nearest 1010oth if necessary.\newline 1-Var-Stats xˉ=137.142857143Σx=960Σx2=132126Sx=8.83984485966σx=8.18410604994n=7minX=128Q1=129Med2=137Q3=149maxX=149 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=137.142857143 \\ \Sigma x=960 \\ \Sigma x^{2}=132126 \\ S x=8.83984485966 \\ \sigma x=8.18410604994 \\ n=7 \\ \operatorname{minX}=128 \\ \mathrm{Q}_{1}=129 \\ \mathrm{Med}^{2}=137 \\ \mathrm{Q}_{3}=149 \\ \max \mathrm{X}=149 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the mean of the dataset, rounding to the nearest 1010oth if necessary.\newline 1-Var-Stats xˉ=137.142857143Σx=960Σx2=132126Sx=8.83984485966σx=8.18410604994n=7minX=128Q1=129Med2=137Q3=149maxX=149 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=137.142857143 \\ \Sigma x=960 \\ \Sigma x^{2}=132126 \\ S x=8.83984485966 \\ \sigma x=8.18410604994 \\ n=7 \\ \operatorname{minX}=128 \\ \mathrm{Q}_{1}=129 \\ \mathrm{Med}^{2}=137 \\ \mathrm{Q}_{3}=149 \\ \max \mathrm{X}=149 \end{array} \newlineAnswer:
  1. Identify Mean Symbol: Identify the symbol that represents the mean in the calculator output.\newlineThe calculator output shows xˉ=137.142857143\bar{x}=137.142857143 which represents the mean of the dataset.
  2. Round Mean to Nearest Hundredth: Round the mean to the nearest hundredth if necessary.\newlineThe mean given is 137.142857143137.142857143. When rounding to the nearest hundredth, we look at the third decimal place, which is a 22. Since it is less than 55, we do not need to round up the second decimal place. Therefore, the mean rounded to the nearest hundredth is 137.14137.14.