Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the inter-quartile range of the dataset.

{:[" 1-Var-Stats "],[ bar(x)=239.428571429],[Sigma x=1676],[Sigmax^(2)=406076],[Sx=28.2657457173],[sigma x=26.1689955201],[n=7],[minX=191],[Q_(1)=232],[Med^(2)=237],[Q_(3)=251],[maxX=286]:}
Answer:

Based on the following calculator output, determine the inter-quartile range of the dataset.\newline 1-Var-Stats xˉ=239.428571429Σx=1676Σx2=406076Sx=28.2657457173σx=26.1689955201n=7minX=191Q1=232Med2=237Q3=251maxX=286 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=239.428571429 \\ \Sigma x=1676 \\ \Sigma x^{2}=406076 \\ S x=28.2657457173 \\ \sigma x=26.1689955201 \\ n=7 \\ \operatorname{minX}=191 \\ \mathrm{Q}_{1}=232 \\ \mathrm{Med}^{2}=237 \\ \mathrm{Q}_{3}=251 \\ \max \mathrm{X}=286 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the inter-quartile range of the dataset.\newline 1-Var-Stats xˉ=239.428571429Σx=1676Σx2=406076Sx=28.2657457173σx=26.1689955201n=7minX=191Q1=232Med2=237Q3=251maxX=286 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=239.428571429 \\ \Sigma x=1676 \\ \Sigma x^{2}=406076 \\ S x=28.2657457173 \\ \sigma x=26.1689955201 \\ n=7 \\ \operatorname{minX}=191 \\ \mathrm{Q}_{1}=232 \\ \mathrm{Med}^{2}=237 \\ \mathrm{Q}_{3}=251 \\ \max \mathrm{X}=286 \end{array} \newlineAnswer:
  1. Understand IQR Definition: Understand what the inter-quartile range (IQR) is.\newlineThe IQR is the difference between the third quartile (Q3Q_3) and the first quartile (Q1Q_1) of a dataset. It measures the spread of the middle 50%50\% of the data.
  2. Identify Q33 and Q11: Identify the values of Q33 and Q11 from the calculator output.\newlineAccording to the output, Q1Q1 is 232232 and Q3Q3 is 251251.
  3. Calculate IQR: Calculate the IQR by subtracting Q1Q1 from Q3Q3. \newlineIQR=Q3Q1IQR = Q3 - Q1\newlineIQR=251232IQR = 251 - 232\newlineIQR=19IQR = 19