Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

b) 
lim_(x rarr+oo)(sqrt(4x^(2)-3x+7)-x)/(x+2)

(1pt)

limx+4x23x+7xx+2 \lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}-3 x+7}-x}{x+2} \newline

Full solution

Q. limx+4x23x+7xx+2 \lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}-3 x+7}-x}{x+2} \newline
  1. Simplify Inside Square Root: Simplify the expression inside the square root for large xx values.\newlineAs xx approaches infinity, the term 3x-3x becomes negligible compared to 4x24x^2, so we approximate 4x23x+74x2\sqrt{4x^2 - 3x + 7} \approx \sqrt{4x^2}.
  2. Simplify Square Root: Simplify the square root. 4x2=2x\sqrt{4x^2} = 2x, because the square root and square cancel out, and we take the positive root since xx is approaching infinity.
  3. Substitute Back: Substitute back into the original limit expression.\newlineReplace 4x23x+7\sqrt{4x^2 - 3x + 7} with 2x2x in the limit expression: 2xxx+2\frac{2x - x}{x + 2}.
  4. Simplify Numerator: Simplify the numerator. 2xx=x2x - x = x.
  5. Simplify Entire Expression: Simplify the entire expression. \newlinexx+2=11+2x\frac{x}{x + 2} = \frac{1}{1 + \frac{2}{x}}.
  6. Evaluate Limit: Evaluate the limit as xx approaches infinity.\newlineAs xx approaches infinity, 2x\frac{2}{x} approaches 00, so 1+2x1 + \frac{2}{x} approaches 11. Therefore, the limit of 11+2x\frac{1}{1 + \frac{2}{x}} as xx approaches infinity is 11.

More problems from Add and subtract polynomials