Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

At LaGuardia Airport for a certain nightly flight, the probability that it will rain is 0.12 and the probability that the flight will be delayed is 0.15 . The probability that it will not rain and the flight will leave on time is 0.83 . What is the probability that the flight would leave on time when it is raining? Round your answer to the nearest thousandth.
Answer:

At LaGuardia Airport for a certain nightly flight, the probability that it will rain is 00.1212 and the probability that the flight will be delayed is 00.1515 . The probability that it will not rain and the flight will leave on time is 00.8383 . What is the probability that the flight would leave on time when it is raining? Round your answer to the nearest thousandth.\newlineAnswer:

Full solution

Q. At LaGuardia Airport for a certain nightly flight, the probability that it will rain is 00.1212 and the probability that the flight will be delayed is 00.1515 . The probability that it will not rain and the flight will leave on time is 00.8383 . What is the probability that the flight would leave on time when it is raining? Round your answer to the nearest thousandth.\newlineAnswer:
  1. Events Denotation: Let's denote the events as follows:\newlineR: It will rain.\newlineD: The flight will be delayed.\newlineT: The flight will leave on time.\newlineWe are given the following probabilities:\newlineP(R)=0.12P(R) = 0.12\newlineP(D)=0.15P(D) = 0.15\newlineP(not R and T)=0.83P(\text{not } R \text{ and } T) = 0.83\newlineWe need to find the probability that the flight will leave on time given that it is raining, which is P(TR)P(T|R).
  2. Find Probability of Flight Leaving on Time: First, we need to find the probability that the flight will leave on time, which is P(T)P(T). We can use the complement rule since we know P(not R and T)P(\text{not } R \text{ and } T), which is the probability that it will not rain and the flight will leave on time.\newlineP(T)=P(not R and T)+P(R and T)P(T) = P(\text{not } R \text{ and } T) + P(R \text{ and } T)\newlineHowever, we don't have P(R and T)P(R \text{ and } T) directly, so we need to find it using the information we have.
  3. Find Probability of Flight Delayed: We can find P(R and T)P(R \text{ and } T) by using the fact that P(R and T)P(R \text{ and } T) is the complement of P(R and D)P(R \text{ and } D), the probability that it will rain and the flight will be delayed.\newlineP(R and T)=P(R)P(R and D)P(R \text{ and } T) = P(R) - P(R \text{ and } D)\newlineWe don't have P(R and D)P(R \text{ and } D) directly, but we can find it using the probability of the flight being delayed, P(D)P(D), and the probability that the flight will leave on time when it's not raining, P(not R and T)P(\text{not } R \text{ and } T).\newlineP(D)=P(R and D)+P(not R and D)P(D) = P(R \text{ and } D) + P(\text{not } R \text{ and } D)
  4. Find Probability of Flight Leaving on Time Given Rain: We can rearrange the above equation to find P(R and D)P(R \text{ and } D):P(R and D)=P(D)P(not R and D)P(R \text{ and } D) = P(D) - P(\text{not } R \text{ and } D)We know P(D)=0.15P(D) = 0.15, but we don't have P(not R and D)P(\text{not } R \text{ and } D) directly. However, we can find it using the complement of P(not R and T)P(\text{not } R \text{ and } T).P(not R and D)=P(not R)P(not R and T)P(\text{not } R \text{ and } D) = P(\text{not } R) - P(\text{not } R \text{ and } T)
  5. Find Probability of Flight Leaving on Time: Now we need to find P(not R)P(\text{not } R), which is the complement of P(R)P(R). \newlineP(not R)=1P(R)P(\text{not } R) = 1 - P(R)\newlineP(not R)=10.12P(\text{not } R) = 1 - 0.12\newlineP(not R)=0.88P(\text{not } R) = 0.88
  6. Find Probability of Flight Leaving on Time: Now we need to find P(not R)P(\text{not } R), which is the complement of P(R)P(R).P(not R)=1P(R)P(\text{not } R) = 1 - P(R)P(not R)=10.12P(\text{not } R) = 1 - 0.12P(not R)=0.88P(\text{not } R) = 0.88Using the value of P(not R)P(\text{not } R), we can find P(not R and D)P(\text{not } R \text{ and } D):P(not R and D)=P(not R)P(not R and T)P(\text{not } R \text{ and } D) = P(\text{not } R) - P(\text{not } R \text{ and } T)P(not R and D)=0.880.83P(\text{not } R \text{ and } D) = 0.88 - 0.83P(not R and D)=0.05P(\text{not } R \text{ and } D) = 0.05
  7. Find Probability of Flight Leaving on Time: Now we need to find P(not R)P(\text{not } R), which is the complement of P(R)P(R).
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)
    P(not R)=10.12P(\text{not } R) = 1 - 0.12
    P(not R)=0.88P(\text{not } R) = 0.88Using the value of P(not R)P(\text{not } R), we can find P(not R and D)P(\text{not } R \text{ and } D):
    P(not R and D)=P(not R)P(not R and T)P(\text{not } R \text{ and } D) = P(\text{not } R) - P(\text{not } R \text{ and } T)
    P(not R and D)=0.880.83P(\text{not } R \text{ and } D) = 0.88 - 0.83
    P(not R and D)=0.05P(\text{not } R \text{ and } D) = 0.05Now we can find P(R)P(R)00:
    P(R)P(R)11
    P(R)P(R)22
    P(R)P(R)33
  8. Find Probability of Flight Leaving on Time: Now we need to find P(not R)P(\text{not } R), which is the complement of P(R)P(R).
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)
    P(not R)=10.12P(\text{not } R) = 1 - 0.12
    P(not R)=0.88P(\text{not } R) = 0.88Using the value of P(not R)P(\text{not } R), we can find P(not R and D)P(\text{not } R \text{ and } D):
    P(not R and D)=P(not R)P(not R and T)P(\text{not } R \text{ and } D) = P(\text{not } R) - P(\text{not } R \text{ and } T)
    P(not R and D)=0.880.83P(\text{not } R \text{ and } D) = 0.88 - 0.83
    P(not R and D)=0.05P(\text{not } R \text{ and } D) = 0.05Now we can find P(R)P(R)00:
    P(R)P(R)11
    P(R)P(R)22
    P(R)P(R)33With P(R)P(R)00 found, we can now find P(R)P(R)55:
    P(R)P(R)66
    P(R)P(R)77
    P(R)P(R)88
  9. Find Probability of Flight Leaving on Time: Now we need to find P(not R)P(\text{not } R), which is the complement of P(R)P(R).
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)
    P(not R)=10.12P(\text{not } R) = 1 - 0.12
    P(not R)=0.88P(\text{not } R) = 0.88 Using the value of P(not R)P(\text{not } R), we can find P(not R and D)P(\text{not } R \text{ and } D):
    P(not R and D)=P(not R)P(not R and T)P(\text{not } R \text{ and } D) = P(\text{not } R) - P(\text{not } R \text{ and } T)
    P(not R and D)=0.880.83P(\text{not } R \text{ and } D) = 0.88 - 0.83
    P(not R and D)=0.05P(\text{not } R \text{ and } D) = 0.05 Now we can find P(R)P(R)00:
    P(R)P(R)11
    P(R)P(R)22
    P(R)P(R)33 With P(R)P(R)00 found, we can now find P(R)P(R)55:
    P(R)P(R)66
    P(R)P(R)77
    P(R)P(R)88 Now we can find P(R)P(R)99, the probability that the flight will leave on time:
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)00
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)11
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)22
  10. Find Probability of Flight Leaving on Time: Now we need to find P(not R)P(\text{not } R), which is the complement of P(R)P(R).
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)
    P(not R)=10.12P(\text{not } R) = 1 - 0.12
    P(not R)=0.88P(\text{not } R) = 0.88 Using the value of P(not R)P(\text{not } R), we can find P(not R and D)P(\text{not } R \text{ and } D):
    P(not R and D)=P(not R)P(not R and T)P(\text{not } R \text{ and } D) = P(\text{not } R) - P(\text{not } R \text{ and } T)
    P(not R and D)=0.880.83P(\text{not } R \text{ and } D) = 0.88 - 0.83
    P(not R and D)=0.05P(\text{not } R \text{ and } D) = 0.05 Now we can find P(R)P(R)00:
    P(R)P(R)11
    P(R)P(R)22
    P(R)P(R)33 With P(R)P(R)00 found, we can now find P(R)P(R)55:
    P(R)P(R)66
    P(R)P(R)77
    P(R)P(R)88 Now we can find P(R)P(R)99, the probability that the flight will leave on time:
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)00
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)11
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)22 Finally, we can find the probability that the flight will leave on time given that it is raining, which is P(not R)=1P(R)P(\text{not } R) = 1 - P(R)33:
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)44
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)55
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)66
    P(not R)=1P(R)P(\text{not } R) = 1 - P(R)77 (rounded to the nearest thousandth)

More problems from Find probabilities using the addition rule