Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let XX have the probability density function given by:\newline fX(x)=0.5exf_{X}(x)=0.5e^{-|x|} where -\infty < x < \infty.\newline What is the probability that x|x| falls between 22 and 44 ? \newlineRound your answer to three decimal places.\newlinePick ONE option\newline(A) 0.1170.117\newline(B) 0.0180.018\newline(C) 0.1350.135\newline(D) 0.0680.068

Full solution

Q. Let XX have the probability density function given by:\newline fX(x)=0.5exf_{X}(x)=0.5e^{-|x|} where <x<-\infty < x < \infty.\newline What is the probability that x|x| falls between 22 and 44 ? \newlineRound your answer to three decimal places.\newlinePick ONE option\newline(A) 0.1170.117\newline(B) 0.0180.018\newline(C) 0.1350.135\newline(D) 0.0680.068
  1. Integrate from 22 to 44: To find the probability that x)fallsbetween$2|x| ) falls between \$2 and 44, we need to integrate the probability density function fX(x)f_{X}(x) from 4-4 to 2-2 and from 22 to 44, because x|x| between 22 and 44 means 4400 is between 4-4 and 2-2 or between 22 and 44.
  2. Calculate integral from 22 to 44: First, we calculate the integral from 22 to 44. The integral of fX(x)f_{X}(x) from 22 to 44 is:\newline240.5exdx\int_{2}^{4} 0.5 \cdot e^{-|x|} \, dx\newlineSince xx is positive in this interval, x=x|x| = x, so the integral becomes:\newline240.5exdx\int_{2}^{4} 0.5 \cdot e^{-x} \, dx
  3. Calculate integral value: To solve the integral, we use the antiderivative of exe^{-x}, which is ex-e^{-x}. Therefore, the integral becomes:\newline0.5×ex-0.5 \times e^{-x} evaluated from 22 to 44\newline=0.5×(e4e2)= -0.5 \times (e^{-4} - e^{-2})
  4. Calculate integral from 4-4 to 2-2: Now we calculate the value of the integral:\newline0.5×(e4e2)=0.5×(0.01830.1353)-0.5 \times (e^{-4} - e^{-2}) = -0.5 \times (0.0183 - 0.1353) (using a calculator for e4e^{-4} and e2e^{-2})\newline=0.5×(0.117)= -0.5 \times (-0.117)\newline=0.0585= 0.0585
  5. Calculate integral value: Next, we calculate the integral from 4-4 to 2-2. The integral of fX(x)f_{X}(x) from 4-4 to 2-2 is:\newline420.5e(x)dx\int_{-4}^{-2} 0.5 \cdot e^{(-|x|)} \, dx\newlineSince xx is negative in this interval, x=x|x| = -x, so the integral becomes:\newline420.5e((x))dx\int_{-4}^{-2} 0.5 \cdot e^{(-(-x))} \, dx\newline=420.5exdx= \int_{-4}^{-2} 0.5 \cdot e^{x} \, dx
  6. Add probabilities: To solve this integral, we use the antiderivative of exe^{x}, which is exe^{x}. Therefore, the integral becomes:\newline0.5×ex0.5 \times e^{x} evaluated from 4-4 to 2-2\newline= 0.5×(e2e4)0.5 \times (e^{-2} - e^{-4})
  7. Add probabilities: To solve this integral, we use the antiderivative of exe^{x}, which is exe^{x}. Therefore, the integral becomes:\newline0.5×ex0.5 \times e^{x} evaluated from 4-4 to 2-2\newline= 0.5×(e2e4)0.5 \times (e^{-2} - e^{-4})Now we calculate the value of the integral:\newline0.5×(e2e4)=0.5×(0.13530.0183)0.5 \times (e^{-2} - e^{-4}) = 0.5 \times (0.1353 - 0.0183) (using a calculator for e2e^{-2} and e4e^{-4})\newline= 0.5×0.1170.5 \times 0.117\newline= exe^{x}00
  8. Add probabilities: To solve this integral, we use the antiderivative of exe^{x}, which is exe^{x}. Therefore, the integral becomes:\newline0.5×ex0.5 \times e^{x} evaluated from 4-4 to 2-2\newline= 0.5×(e2e4)0.5 \times (e^{-2} - e^{-4})Now we calculate the value of the integral:\newline0.5×(e2e4)=0.5×(0.13530.0183)0.5 \times (e^{-2} - e^{-4}) = 0.5 \times (0.1353 - 0.0183) (using a calculator for e2e^{-2} and e4e^{-4})\newline= 0.5×0.1170.5 \times 0.117\newline= exe^{x}00Finally, we add the probabilities from the two intervals to find the total probability that exe^{x}11 falls between exe^{x}22 and exe^{x}33:\newlineexe^{x}00 (from exe^{x}22 to exe^{x}33) + exe^{x}00 (from 4-4 to 2-2) = 0.5×ex0.5 \times e^{x}00

More problems from Identify independent events