Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A small mass attached to a spring oscillates in simple harmonic motion with an amplitude of 
50mm. It takes 30 seconds to complete 10 oscillations. Calculate its period, angular velocity, maximum speed and the maximum acceleration.

A small mass attached to a spring oscillates in simple harmonic motion with an amplitude of 50 mm 50 \mathrm{~mm} . It takes 3030 seconds to complete 1010 oscillations. Calculate its period, angular velocity, maximum speed and the maximum acceleration.

Full solution

Q. A small mass attached to a spring oscillates in simple harmonic motion with an amplitude of 50 mm 50 \mathrm{~mm} . It takes 3030 seconds to complete 1010 oscillations. Calculate its period, angular velocity, maximum speed and the maximum acceleration.
  1. Calculate Period: To find the period (TT) of the oscillation, we need to divide the total time taken by the number of oscillations.\newlineTotal time for 1010 oscillations = 3030 seconds\newlineNumber of oscillations = 1010\newlinePeriod (TT) = Total time for 1010 oscillations / Number of oscillations
  2. Calculate Angular Velocity: Calculating the period:\newlineT=30 seconds10 oscillations=3 seconds per oscillationT = \frac{30 \text{ seconds}}{10 \text{ oscillations}} = 3 \text{ seconds per oscillation}
  3. Find Maximum Speed: Next, we calculate the angular velocity (ω\omega), which is given by the formula ω=2πT\omega = \frac{2\pi}{T}.
  4. Calculate Maximum Acceleration: Calculating the angular velocity: $\omega = \frac{\(2\)\pi}{T} = \frac{\(2\)\pi}{\(3\)} \text{ seconds} \approx \(2\).\(0944\) \text{ radians per second}
  5. Calculate Maximum Acceleration: Calculating the angular velocity:\(\newline\)\(\omega = \frac{2\pi}{T} = \frac{2\pi}{3} \) seconds \(\approx 2.0944\) radians per secondTo find the maximum speed (\(v_{\text{max}}\)), we use the formula \(v_{\text{max}} = \omega \times A\), where \(A\) is the amplitude.\(\newline\)Amplitude (\(A\)) = \(50\)mm = \(0.05\)m (since we need to work in SI units)
  6. Calculate Maximum Acceleration: Calculating the angular velocity: \(\omega = \frac{2\pi}{T} = \frac{2\pi}{3} \text{ seconds} \approx 2.0944 \text{ radians per second}\)To find the maximum speed \((v_{\text{max}})\), we use the formula \(v_{\text{max}} = \omega \times A\), where \(A\) is the amplitude. Amplitude \((A) = 50\text{mm} = 0.05\text{m}\) (since we need to work in SI units)Calculating the maximum speed: \(v_{\text{max}} = \omega \times A = 2.0944 \text{ radians/second} \times 0.05\text{m} \approx 0.10472 \text{ meters per second}\)
  7. Calculate Maximum Acceleration: Calculating the angular velocity: \(\omega = \frac{2\pi}{T} = \frac{2\pi}{3} \text{ seconds} \approx 2.0944 \text{ radians per second}\)To find the maximum speed \((v_{\text{max}})\), we use the formula \(v_{\text{max}} = \omega \times A\), where \(A\) is the amplitude. Amplitude \((A) = 50\text{mm} = 0.05\text{m}\) (since we need to work in SI units)Calculating the maximum speed: \(v_{\text{max}} = \omega \times A = 2.0944 \text{ radians/second} \times 0.05\text{m} \approx 0.10472 \text{ meters per second}\)Finally, to find the maximum acceleration \((a_{\text{max}})\), we use the formula \(a_{\text{max}} = \omega^2 \times A\).
  8. Calculate Maximum Acceleration: Calculating the angular velocity: \(\omega = \frac{2\pi}{T} = \frac{2\pi}{3} \text{ seconds} \approx 2.0944 \text{ radians per second}\)To find the maximum speed \((v_{\text{max}})\), we use the formula \(v_{\text{max}} = \omega \times A\), where \(A\) is the amplitude. Amplitude \((A) = 50\text{mm} = 0.05\text{m}\) (since we need to work in SI units)Calculating the maximum speed: \(v_{\text{max}} = \omega \times A = 2.0944 \text{ radians/second} \times 0.05\text{m} \approx 0.10472 \text{ meters per second}\)Finally, to find the maximum acceleration \((a_{\text{max}})\), we use the formula \(a_{\text{max}} = \omega^2 \times A\). Calculating the maximum acceleration: \(a_{\text{max}} = \omega^2 \times A = (2.0944 \text{ radians/second})^2 \times 0.05\text{m} \approx 0.2197 \text{ meters per second squared}\)

More problems from Relate position, velocity, speed, and acceleration using derivatives