Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A radioactive compound with mass 280 grams decays at a rate of 
18.3% per hour. Which equation represents how many grams of the compound will remain after 2 hours?

C=280(1.183)^(2)

C=280(1-0.183)(1-0.183)

C=280(1+0.183)^(2)

C=280(1-0.183)(1-0.183)(1-0.183)(1-0.183)

A radioactive compound with mass 280280 grams decays at a rate of 18.3% 18.3 \% per hour. Which equation represents how many grams of the compound will remain after 22 hours?\newlineC=280(1.183)2 C=280(1.183)^{2} \newlineC=280(10.183)(10.183) C=280(1-0.183)(1-0.183) \newlineC=280(1+0.183)2 C=280(1+0.183)^{2} \newlineC=280(10.183)(10.183)(10.183)(10.183) C=280(1-0.183)(1-0.183)(1-0.183)(1-0.183)

Full solution

Q. A radioactive compound with mass 280280 grams decays at a rate of 18.3% 18.3 \% per hour. Which equation represents how many grams of the compound will remain after 22 hours?\newlineC=280(1.183)2 C=280(1.183)^{2} \newlineC=280(10.183)(10.183) C=280(1-0.183)(1-0.183) \newlineC=280(1+0.183)2 C=280(1+0.183)^{2} \newlineC=280(10.183)(10.183)(10.183)(10.183) C=280(1-0.183)(1-0.183)(1-0.183)(1-0.183)
  1. Decay Factor Calculation: Understand the decay rate and convert it to a decay factor.\newlineThe decay rate is given as 18.3%18.3\% per hour, which means that each hour, the compound loses 18.3%18.3\% of its mass. To find the decay factor, we subtract the decay rate from 11 (since 11 represents the whole mass).\newlineDecay factor =1decay rate= 1 - \text{decay rate}\newlineDecay factor =10.183= 1 - 0.183\newlineDecay factor =0.817= 0.817
  2. Exponential Decay Equation Formulation: Write the exponential decay equation using the decay factor.\newlineThe general form of the exponential decay equation is C=initial_mass×(decay_factor)timeC = \text{initial\_mass} \times (\text{decay\_factor})^{\text{time}}.\newlineHere, the initial mass (C0C_0) is 280280 grams, the decay factor we found in Step 11 is 0.8170.817, and the time (tt) is 22 hours.\newlineC=280×(0.817)2C = 280 \times (0.817)^2
  3. Options Comparison: Check the given options to see which one matches the equation we derived.\newlineOption A: C=280(1.183)2C=280(1.183)^{2} - This option is incorrect because it suggests an increase by 18.3%18.3\% instead of a decrease.\newlineOption B: C=280(10.183)(10.183)C=280(1-0.183)(1-0.183) - This option is correct because it represents the mass after two hours, taking into account the decay rate twice.\newlineOption C: C=280(1+0.183)2C=280(1+0.183)^{2} - This option is incorrect because it suggests an increase by 18.3%18.3\% instead of a decrease.\newlineOption D: C=280(10.183)(10.183)(10.183)(10.183)C=280(1-0.183)(1-0.183)(1-0.183)(1-0.183) - This option is incorrect because it suggests the decay happens over four hours instead of two.

More problems from Write exponential functions: word problems