Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A line passes through the points (3,4)(-3, -4) and (6,10)(6, -10). Write its equation in slope-intercept form.

Full solution

Q. A line passes through the points (3,4)(-3, -4) and (6,10)(6, -10). Write its equation in slope-intercept form.
  1. Given points: Given points: \newline(3,4)(-3, -4) and \newline(6,10)(6, -10) \newlineFind the slope of the line using the points. \newlineSlope, mm \newline=y2y1x2x1= \frac{y_2 - y_1}{x_2 - x_1} \newline=10(4)6(3)= \frac{-10 - (-4)}{6 - (-3)} \newline=10+46+3= \frac{-10 + 4}{6 + 3} \newline=69= \frac{-6}{9} \newline=23= \frac{-2}{3} \newlineSo, m=23m = -\frac{2}{3}
  2. Find slope: We have: \newlinem:23m: -\frac{2}{3} \newlineChoose one of the points to find the value of bb, the y-intercept. Let's use the point (3,4)(-3, -4). \newlineSubstitute x=3x = -3, y=4y = -4, and m=23m = -\frac{2}{3} in y=mx+by = mx + b. \newline4=(23)(3)+b-4 = \left(-\frac{2}{3}\right)(-3) + b \newline4=2+b-4 = 2 + b \newline42=b-4 - 2 = b \newlinebb00 \newlineSo, bb11
  3. Find y-intercept: We found: \newlinem:23m: -\frac{2}{3} \newlineb:6b: -6 \newlineWrite the equation of the line in slope-intercept form. \newlineSubstitute m=23m = -\frac{2}{3} and b=6b = -6 in y=mx+by = mx + b. \newliney=(23)x+(6)y = (-\frac{2}{3})x + (-6) \newliney=(23)x6y = (-\frac{2}{3})x - 6 \newlineSlope-intercept form: y=(23)x6y = (-\frac{2}{3})x - 6

More problems from Write a linear equation from two points